
Compressing the Embedding Matrix
by a Dictionary Screening Approach

in Text Classification

Jing Zhou1(B), Xinru Jing1, Muyu Liu1, and Hansheng Wang2

1 Center for Applied Statistics and School of Statistics, Renmin University of China,
Beijing, China

jing.zhou@ruc.edu.cn, jingxinru0207@ruc.edu.cn, Muyu.Liu@ruc.edu.cn
2 Guanghua School of Management, Peking University, Beijing, China

hansheng@pku.edu.cn

Abstract. In this paper, we propose a dictionary screening method for
embedding compression in text classification. The key point is to eval-
uate the importance of each keyword in the dictionary. To this end, we
first train a pre-specified recurrent neural network-based model using
a full dictionary. This leads to a benchmark model, which we use to
obtain the predicted class probabilities for each sample in a dataset.
Next, to evaluate the impact of each keyword in affecting the predicted
class probabilities, we develop a novel method for assessing the impor-
tance of each keyword in a dictionary. Consequently, each keyword can be
screened, and only the most important keywords are reserved. With these
screened keywords, a new dictionary with a considerably reduced size can
be constructed. Accordingly, the original text sequence can be substan-
tially compressed. The proposed method leads to significant reductions
in terms of parameters, average text sequence, and dictionary size. Mean-
while, the prediction power remains very competitive compared to the
benchmark model. Extensive numerical studies are presented to demon-
strate the empirical performance of the proposed method.

Keywords: Embedding Compression · Dictionary Screening · Text
Classification

1 Introduction

Over the past few decades, natural language processing (NLP) has become a
popular research field. Among the applications of this filed, text classification is
considered to be a problem of great importance. Many successful applications
exist, such as news classification [14], topic labeling [2], sentiment analysis [8],
and many others. Note that, for most text classification tasks, the inputs are
documents constructed from word sequences. Therefore, a standard RNN-based
model can be readily applied. Remarkably, the model complexity of an RNN-
based model is mainly determined by two factors. They are, respectively, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 457–468, 2023.
https://doi.org/10.1007/978-3-031-33374-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33374-3_36&domain=pdf
https://doi.org/10.1007/978-3-031-33374-3_36

458 J. Zhou et al.

model structure and dictionary size. Obviously, large dictionaries lead to more
complicated RNN models with a large number of parameters. To illustrate this
idea, consider, for example, a standard RNN model with one embedding layer and
one recurrent hidden layer. The total number of parameters needed is dk + 2k2,
where d is the dictionary size and k is the dimension for both the hidden layer
and embedding space. In the AG’s News dataset [18], for instance, the total
number of keywords contained in the dictionary could be as large as d = 93, 994.
If, following [3], we set the dimensions of both the hidden layer and embedding
space to k = 128, then the total number of parameters is more than 12 million.
As to be demonstrated later, we find that the dictionary size can be effectively
reduced to be d = 3, 000, if the method developed in this work is used. As
a result, the total number of parameters can be reduced to about 0.58 million.
This accounts for only about 4.76% of the original model complexity with limited
sacrifice of prediction accuracy.

For text classification, most of the prior work focuses on compressing the
embedding matrix. For example, a number of researchers have adopted hashing
or quantization-based approaches to compress the embedding matrix [9,13,15].
[1] proposed a low rank matrix factorization for the embedding layer. In addition
to compressing the embedding matrix, there is another branch of research that
shows training with character-level inputs can achieve several benefits over word-
level approaches, and it does so with fewer parameters [17]. For a more detailed
review paper, we refer to [5]. Despite the excellent research that has been done on
model compressing, it seems that most studies focus on simplifying the model
structure in one way or another. Little research has been done on dictionary
screening. As discussed in previous paragraph, we can see that the size of the
dictionary can have an important impact on model size. As a consequence, we
are motivated to fill this gap by proposing a dictionary screening method for
text classification applications.

The proposed dictionary screening method aims to exclude less useful key-
words from a dictionary. It can be used to effectively reduce dictionary size, lead-
ing to a significant reduction in model complexity. Specifically, we develop here
a novel dictionary screening method as follows. First, we train a pre-specified
RNN-based model using the full dictionary on a training dataset. This leads
to a benchmark model. With the help of the benchmark model, we obtain the
predicted class probabilities for every sample in the validation set. Next, for a
given keyword in the dictionary, we consider whether it should be excluded from
the dictionary. Obviously, keywords that significantly impact the predicted class
probabilities should be kept, while those that do not should be excluded. Thus,
the key here is determining how to evaluate the impact of the target keyword in
affecting the estimated class probabilities.

To this end, for each document, we replace the target keyword with a mean-
ingless substitute, which is often an empty space. By doing so, the input of the
target keyword is excluded. We then apply the pretrained benchmark model
to this new document. This leads to a new set of estimated class probabilities.
Thereafter, for each document, we obtain two sets of estimated class probabil-

Compressing the Embedding Matrix by a Dictionary Screening Approach 459

ities. One is computed based on the full dictionary, and the other is computed
based on the dictionary with the target keyword excluded. Next, the difference
between the two sets of probability estimators is evaluated and summarized.
Keywords with large differences in class probability estimators should be kept.
By selecting an appropriate threshold value, a new dictionary with a substan-
tially compressed size can be obtained. Finally, with the compressed dictionary,
each document can be re-constructed. The associated RNN-based model can
be re-trained on the re-constructed documents, and its prediction accuracy can
be evaluated. Our extensive numerical experiments suggest that the proposed
method can compress the parameter quantity by more than 90%, on average,
with little accuracy sacrificed.

The main contribution of our work is the development of a compression
method for text classification using dictionary screening. There has been rela-
tively little work on compressing dictionary size in the previous literature. A
second contribution is that we provide a novel method for evaluating the impor-
tance of the keywords in a dictionary. We empirically show that our method
outperforms popular baselines like term frequency-inverse document frequency
(TF-IDF) and the t-test for keyword importance analysis.

2 Methodology

2.1 Problem Set up

Let D = {wd : 0 ≤ d ≤ D} be a dictionary containing a total of D keywords
with wd representing the dth keyword. We define w0 to be an empty space. Then,
assume a total of N documents indexed by 1 ≤ i ≤ N . Let Xi = {Xit ∈ D :
1 ≤ t ≤ T} be the ith document. The document is constructed by a sequence
of keywords, Xit, which is indexed by t and is generated from D. If the actual
document length, T ∗, is less than T , we then define Xit = w0 for T ∗ < t ≤ T .
Next, let Yi ∈ {1, 2, · · · ,K} be the class label associated with the ith document.
The goal is then to train a classifier so that we can accurately predict Yi. To
this end, various deep learning models can be used. For illustration purposes, we
consider here a simple RNN model with four layers: one input layer of a word
sequence with dimension T , one embedding layer with d1 = 128 hidden nodes,
one simple RNN layer with d2 = 64 hidden nodes, and one fully connected
layer with K nodes (i.e., the number of class labels). Suppose the dictionary
size is D = 10, 000 and the number of class labels is K = 10, then for the
above simple RNN model, the total number of parameters is given by dfa =
10, 000 × 128 + 64 × 128 + 64 × 64 + 64 × 10 = 1, 292, 928 with the bias term
ignored. However, this number will be much reduced if the dictionary size can
be significantly decreased. For example, the total number of parameters will be
reduced to dfb = 1, 000×128+64×128+64×64+64×10 = 140, 928 if D = 1, 000.
This represents a model complexity reduction as large as (1−dfb/dfa)×100% =
89.1%. We are then motivated to develop a method for dictionary screening.

460 J. Zhou et al.

2.2 Dictionary Screening

As discussed in the introduction, one of the key tasks for dictionary screening is
to evaluate the importance of each keyword in the dictionary. We can formulate
the problem as follows. First, we train a pre-specified RNN-based model using
the full dictionary, D, on the training dataset. Mathematically, we can write this
model as f(Xi, θ) = {fk(Xi, θ)} ∈ R

K , where Xi is the input document, with θ
as the unknown parameters that need to be estimated. Note that f(Xi, θ) is a
K-dimensional vector, its kth element, fk(Xi, θ) ∈ [0, 1], is a theoretical assumed
function to approximate the class probability. That is, P (Yi = k|Xi) ≈ fk(Xi, θ).
By the universal approximation theorem [4,7], we know that this approximation
can be arbitrarily accurate as long as the approximation function, f(·, θ), can
be sufficiently flexible. To estimate θ, an approximately defined loss function
(e.g., the categorical cross entropy) is usually used. Denote the loss function
as LN (θ) = N−1

∑N
i=1 �(Xi, θ), where �(Xi, θ) is the loss function evaluated

on the ith document. The parameter estimators can then be obtained as θ̂ =
argmaxLN (θ). This leads to the pretrained model as f(Xi, θ̂), which serves as
the benchmark model.

Next, with the help of the pretrained model, we consider how to evaluate the
importance of each keyword in D. Specifically, consider the dth keyword, wd, in
D with 1 ≤ d ≤ D. Define SF = {1, 2, · · · , N} as the indices for the full training
document. Then, for every i ∈ SF , we compute its estimated class probability
vector as p̂i = f(Xi, θ̂). Next, for the document Xi = {Xit ∈ D : 1 ≤ t ≤ T}, we
generate a document copy as X

(d)
i = {X

(d)
it ∈ D : 1 ≤ t ≤ T}, where X

(d)
it = Xit

if Xit �= wd, and X
(d)
it = w0 if Xit = wd. In other words, X

(d)
i is a document that

is almost the same as Xi. The only difference is that keyword wd is replaced by an
empty space, w0. We next apply the benchmark model to X

(d)
i , so an update class

probability vector, p̂
(d)
i = f(X(d)

i , θ̂), can be obtained. The difference between p̂i

and p̂
(d)
i is evaluated by their �2-distance as ||p̂i − p̂

(d)
i ||2. We then summarize the

difference for every wd ∈ D as λ̂(d) = |SF |−1
∑

i∈SF ||p̂i − p̂
(d)
i ||2, where |SF | is

the size of SF . This is further treated as the important score for each keyword,
wd ∈ D. Because this important score is obtained by evaluating the differences
in class probability estimators, we name it as the CPE method for simplicity.

Finally, with a carefully selected threshold value, λ, a new dictionary can be
constructed as Dλ = {wd ∈ D : λ̂(d) ≥ λ} ∪ {w0}. To this end, each document
Xi can be reconstructed as Xλi

= {Xλit ∈ Dλ : 1 ≤ t ≤ T}, where Xλit =
Xit if Xit ∈ Dλ, and Xλit = w0 otherwise. Then, by replacing Xis in the
loss function with Xλi

, a new set of parameter estimators can be obtained as
θ̂λ = argmaxLλ(θ), where Lλ(θ) = N−1

∑N
i=1 �(Xλi

, θ). Once θ̂λ is obtained,
the prediction accuracy of the resulting model, f(Xλi

, θ̂λ), can be evaluated on
the testing dataset. Thereafter, the resulting model, f(Xλi

, θ̂λ), serves as the
reduced model after applying dictionary screening. The algorithm details are
presented as follows.

Compressing the Embedding Matrix by a Dictionary Screening Approach 461

Algorithm 1: Dictionary screening method
1 Procedure1 Train a benchmark model:

Input : Document Xi = {Xit ∈ D : 1 ≤ t ≤ T}; Yi ∈ {1, 2, · · · ,K}
for 1 ≤ i ≤ N

Output: Benchmark model f(Xi, θ̂) with estimated parameters θ̂ for
1 ≤ i ≤ N

2 θ̂ = argmaxLN (θ) with LN (θ) = N−1
∑N

i∈1 �(Xi, θ)
3 where�(Xi, θ) is the loss evaluated on the ith document
4 Procedure2 Evaluate the importance of each keyword in D:

Input : D = {wd : 0 ≤ d ≤ D} , f(Xi, θ̂) for 1 ≤ i ≤ N

Output: Dλ = {wd ∈ D : λ̂(d) ≥ λ} ∪ {w0}
5 for d = 1 to D do
6 for i ∈ SF ,SF = {1, 2, · · · , N} is the indices for the full training

document. do
7 Xi = {Xit ∈ D : 1 ≤ t ≤ T}
8 Generate a copy as X

(d)
i = {X

(d)
it ∈ D : 1 ≤ t ≤ T} following:

9 If Xit �= wd then X
(d)
it = Xit else X

(d)
it = w0

10 Uncompressed class probability : p̂i = f(Xi, θ̂)
11 Compressed class probability : p̂

(d)
i = f(X(d)

i , θ̂)
12 Difference computed by �2-distance as ||p̂i − p̂

(d)
i ||2

13 end
14 Summarize the difference:
15 λ̂(d) = |SF |−1

∑
i∈SF ||p̂i − p̂

(d)
i ||2 where |SF | is the size of SF

16 end
17 Select a threshold value λ to finally obtain

Dλ = {wd ∈ D : λ̂(d) ≥ λ} ∪ {w0}

3 Experiments

3.1 Task Description and Datasets

To demonstrate its empirical performance, the proposed dictionary screening
method is evaluated on four large-scale datasets covering various text classifica-
tion tasks. These are, respectively, news classification (AG’s News and Sougou
News), sentiment analysis (Amazon Review Polarity, ARP), and entity clas-
sification (DBPedia). These datasets are popularly studied in previous litera-
ture [17,18]. Summary statistics of the four large-scale datasets are presented
in Table 1. For all the datasets (except for Sougou News), the sample size of
each category is equal in both the training and testing sets. Take AG’s News
for example, it has 30,000 samples and 1,900 samples per class in the training
set and testing set, respectively. For more detailed information about the four
datasets, see [18]. It should be noted that, to make the experiments more diverse,

462 J. Zhou et al.

the Sougou News data used in this paper are different from those in [18]. Par-
ticularly, we used the original Chinese characters of Sougou News to test the
proposed method, not the Pinyin style used in [18]’s work. Moreover, unlike the
other three datasets, the sample size of each category (e.g., sports, entertain-
ment, business, and the Internet) in Sougou News is not equal. The proportions
of the four categories in the training and testing sets are 48%, 15%, 25%, and
12%, respectively.

Table 1. Summary of four large-scale datasets.

Dataset Classes Task TrainingSize TestingSize

AG’s News 4 news classification 120,000 7,600
Sougou News 4 news classification 63,146 15,787
DBPedia 14 entity classification 560,000 70,000
Amazon Review Polarity 2 sentiment analysis 3,600,000 400,000

3.2 Model Settings

We consider here two different types of deep learning models for text classifi-
cation. They are, respectively, TextCNN [10] and TextBiLSTM [11]. We follow
their network structures but with some modifications to adapt to our exper-
iments. In the task of text classification, the input is text sequence Xi with
length T . It should be noted that T is different for different datasets. In the
current experiment, to train the benchmark models, T is set to 60, 300, 50,
and 100 for AG’s News, Sougou News, DBPedia, and Amazon Review Polarity,
respectively. Practically, each keyword wd ∈ D in the text sequence will be con-
verted to a high dimensional vector of d1 via an embedding layer [12]. For all
three models, the embedding size, d1, is set to 128. Next, we briefly describe the
construction details for the two models.

TextCNN. After the embedding layer, we use three convolutional layers to
extract text information. Each convolutional layer has d1 = 128 filters with
kernel size k ∈ {3, 4, 5}, followed by a max pooling with receptive field size
r = 1. Rectified linear units (ReLUs) [6] are used as activation functions in
the convolutional layers. Then, we concatenate the max pooling results of the
three layers and pass it to the final dense layer through a softmax function for
classification.

TextBiLSTM. The bidirectional LSTM (Bi-LSTM) can be seen as an improved
version of the LSTM. This model structure can consider not only forward
encoded information, but also reverse encoded information [11]. We apply a
Bi-LSTM layer with the hidden states dimension, d2, set to 128. We then use
the representation obtained from the final timestep (e.g., XiT) of the Bi-LSTM
layer and pass it through a softmax function for text classification.

Compressing the Embedding Matrix by a Dictionary Screening Approach 463

3.3 Tuning Parameter Specification

The implementation of the proposed dictionary screening method involves a tun-
ing parameter, which is the threshold value λ. For a given classification model,
this tuning parameter should be carefully selected to achieve the best empiri-
cal performance. Here, the best empirical performance means that the proposed
dictionary screening method can reduce the number of model parameters as
much as possible under the condition of ensuring little or no loss of accuracy.
Generally, the larger the λ value is, the smaller the size of the screened dic-
tionary, and thus the higher the reduction rate that can be achieved. However,
considerable prediction accuracy might be lost. In our experiments, different λ
values indicate that different numbers of keywords can be reserved for subse-
quent text compression. To this end, for analysis simplicity, we investigate the
number of important keywords reserved, denoted as K. Specifically, we rear-
range the keywords in descending order according to the importance score (e.g.,
λ̂(d)), and we select the top 1000, 3000, and 5000 keywords, respectively. That
is, K = {1000, 3000, 5000}. Therefore, we can evaluate the impact of differ-
ent tuning parameters on the performance of the proposed dictionary screening
method.

3.4 Competing Methods

For comparison purposes, two other methods for evaluating the importance of
the keywords in a dictionary are studied. The first one is to calculate the TF-
IDF [16] value of each keyword wd ∈ D. For the kth keyword, we use the word
counts as the term-frequency (TF). The inverse document frequency (IDF) is the
logarithm of the division between the total number of documents and the number
of documents with the kth word in the whole dataset. To this end, the TF-IDF
value for each wd ∈ D can be obtained by multiplying the values of TF and
IDF. It is remarkable that the larger the TF-IDF value is, the more important
the keyword is. The second method is to compute a t-test type statistic. Recall
that, for the dth keyword, wd ∈ D, we have two sets of class probabilities, p̂i

and p̂
(d)
i . Both are K-dimensional vectors. Then, for each dimension k ∈ K, a

standard paired two sample t-test can be constructed to test for the statistical
significance. The resulting p values obtained from different ks (e.g., different
categories) are then summarized, and the smallest one is selected as the final
t-test type measure for the target keyword, denoted as Pi,d. In this case, the
smaller the Pi,d value is, the more important the keyword is.

In summary, we have three methods to evaluate the importance of each key-
word in D. These are the proposed method for evaluating the differences in class
probability estimators (CPE), the method for evaluating the TF-IDF values (TF-
IDF), and the method for evaluating the t-test type statistics (t-statistic). To
make a fair comparison, the new dictionaries constructed by the three methods
are of equal size (e.g., with same tuning parameter K). Then, following the pro-
cedure described in Sect. 3.2, we can obtain three different prediction accuracies
based on the screened dictionary.

464 J. Zhou et al.

3.5 Performance Measures and Implementation

Following the existing literature [1,17,18], and our own concerns, we adopt six
measures to gauge the empirical performances of the different compression meth-
ods: the parameter reduction ratio (Prr), dictionary reduction ratio (Drr), stor-
age reduction ratio (Srr), FLOP reduction ratio (Frr), and reduction ratio for
averaged text sequence (Trr). Meanwhile, the out-of-sample prediction accuracy
(Acc) is also monitored.

Both text classification models (e.g., TextCNN and TextBiLSTM) are trained
on the four large-scale datasets. This leads to a total of eight working models.
All the working models are trained using the AdaDelta (Zeiler, 2012) with ρ =
0.95, ε = 10−5, and a batch size of 128. The weight decay is set to 5 × 10−4 with
an �2-norm regularizer. To prevent overfitting, the dropout and early stopping
strategies are used for different working models. Finally, a total of 200 epochs are
conducted for each working model. For each working model, we choose the epoch
with the maximum prediction accuracy on the validation set as the baseline
model. All the experiments were run on a Tesla P100 GPU with 64 GB memory.

4 Results Analysis

4.1 Tuning Parameter Effects

In this subsection, we study the impact of the tuning parameter, K, which deter-
mines the number of keywords reserved. Three measures are used to gauge the
finite sample performance: Acc, Prr, and Trr. For illustration purposes, we use
the AG’s News dataset as an example. For this experiment, three different K val-
ues are studied: K = {1000, 3000, 5000}. The detailed results are given in Fig. 1.
The top panel of Fig. 1 displays the performance of the TextCNN model. The red
line in the first barplot is the prediction accuracy for the benchmark model. We
find the resulting prediction accuracy (Acc) of the reduced model increases as
K becomes larger, while the parameter reduction ratio (Prr) and the reduction
ratio for averaged text sequence (Trr) decrease. In the case of K = 3000, we can
see the parameter reduction ratio (Prr) is more than 95%, but there is almost no
accuracy loss. This suggests that the benchmark model can be substantially com-
pressed with little sacrifice in predictive power. Additionally, the averaged text
sequence is substantially reduced based on the dictionary screening. This indi-
cates that there might be some redundant information in the original text that
contributes less to the text classification. The bottom panel of Fig. 1 presents
the results for the TextBiLSTM model, which are very similar to the findings of
TextCNN.

4.2 Performance of Compression Results

On the one hand, the proposed dictionary screening method aims to compress a
text classification model as much as possible. On the other hand, an over com-
pressed model might suffer from a significant loss of prediction accuracy. Thus, it

Compressing the Embedding Matrix by a Dictionary Screening Approach 465

Fig. 1. Detailed experimental results for TextCNN and TextBiLSTM on the AG’s
News dataset. Three different K values are considered (K = 1000,3000,5000). Three
performance measures are summarized: prediction accuracy (Acc), parameter reduction
ratio (Prr), and reduction ratio for averaged text sequence (Trr). The red dashed line
in the left panel represents the accuracy of the benchmark model. (Color figure online)

is of great importance to understand the trade-off between prediction accuracy
and model compression. Obviously, they should be appropriately balanced. In
this subsection, we report the fine-tuned compression results so that their best
performance can be demonstrated. For the best empirical performance, we try
to extend the search scope for more tuning parameters. Accordingly, every value
in {1000, 2000, · · · , 10000}(e.g., with an interval of 1000) is tested for K in this
subsection. In our case, we expect that the parameter reduction ratio (Prr) will
be no less than 50% and the accuracy loss will be no more than 2%. The best
results in terms of the above criteria are summarized in Table 2. From Table 2,
we can draw the following conclusions. First, for all cases, the benchmark mod-
els can be compressed substantially using the dictionary screening method with
little sacrifice of accuracy. For example, the value of Prr is more than 95% in the
case of TextCNN on Sougou News with only 0.31% sacrifice of accuracy. Second,
we report that for half of the cases, the prediction accuracy of the reduced model
is higher than that of the benchmark model (e.g., ΔAcc is smaller than zero).
For instance, for the TextBiLSTM model on DBPedia, the prediction accuracy
of the baseline model is as high as 97.77%, while that of the reduced model
is further improved to 97.99%. Finally, we find the reduction in storage and
FLOPs are also quite substantial. For instance, the Srr is 99.56% and the Prr is

466 J. Zhou et al.

99.70% for the TextBiLSTM on ARP. To summarize, we find that the proposed
dictionary screening method works quite well on all models and datasets under
consideration.

Table 2. Fine-tuned dictionary screening results for all model and dataset combina-
tions with the best performance. ARP stands for the Amazon Review Polarity dataset.
Acc-1 is the prediction accuracy of the benchmark model. Acc-2 is the prediction accu-
racy of the reduced model. ΔAcc is the difference between the benchmark Acc and
reduced Acc. All computed values are in % units.

Model Acc-1 Acc-2 ΔAcc Prr Drr Trr Srr Frr

TextCNN AG’s News 89.37 89.43 -0.06 95.24 96.81 34.54 85.61 89.49
Sougou News 95.56 95.25 0.31 97.28 98.19 48.35 97.26 93.83
DBPedia 98.41 97.88 0.53 98.97 99.27 27.17 99.40 98.97
ARP 92.70 91.45 1.25 99.74 99.66 13.75 98.77 99.33

TextBiLSTM AG’s News 89.58 89.72 -0.14 92.65 94.68 24.25 85.19 90.72
Sougou News 95.77 95.34 0.43 96.98 98.19 47.53 97.96 95.81
DBPedia 97.77 97.99 -0.22 99.33 99.56 35.14 98.95 98.44
ARP 92.16 92.26 -0.10 99.78 99.87 24.75 99.56 99.70

4.3 Competing Methods

Table 3. Results of the three competing methods (e.g., CPE, TF-IDF, and t-statistics).
ARP stands for the Amazon Review Polarity dataset. Reduced Acc is the prediction
accuracy of the reduced model. For each model and dataset combination, the reduced
models were trained with dictionaries of equal size. Trr is the reduction ratio for aver-
aged text sequence. The values outside of brackets are the results of the propose CPE
method. The first value in brackets is the result obtained by TF-IDF, and the second
value is the result by t-statistic. All computed values are in % units.

Model Reduced Acc Trr

TextCNN AG’s News 89.66 (89.33, 87.91) 34.54 (29.19, 46.07)
Sogou News 94.71 (94.66, 94.68) 57.54 (44.39, 55.56)
DBPedia 97.89 (97.89, 17.23) 27.17 (25.36, 93.12)
ARP 90.73 (90.49, 89.77) 25.50 (24.25, 32.50)

TextBiLSTM AG’s News 90.49 (90.09, 89.89) 18.07 (13.54, 23.84)
Sogou News 95.47 (95.14, 95.31) 47.53 (37.53, 52.54)
DBPedia 97.99 (98.00, 17.39) 35.14 (30.80, 99.82)
ARP 92.32 (92.24, 91.55) 24.75 (24.25, 30.00)

Because the key step of the proposed dictionary screening method is to eval-
uate the importance of each keyword in the dictionary. We compare the per-
formance of the proposed evaluating method, CPE, with two other competing

Compressing the Embedding Matrix by a Dictionary Screening Approach 467

methods. These are the TF-IDF and t-statistics methods, which are described
in Subsect. 4.4. For a fair comparison, the new dictionaries constructed with the
three methods are of equal size (e.g., the dictionary reduction ratio, Drr, is the
same) for each model and dataset combination. As a result, only the reduced pre-
diction accuracy (Acc) and reduction ratio for averaged text sequence (Trr) are
presented in Table 3. From Table 3, we can obtain the following conclusions. First,
we can see that the t-statistics method is not stable in evaluating the importance
of keywords because its results for the DBPedia dataset were not comparable
with the other methods. In the case of DBPedia, the t-statistic method ceases to
be effective because its Trr value is nearly 100%. This indicates that it cannot
filter the important keywords from the dictionary, leading to a very low reduced
Acc value. Second, in all cases, the proposed CPE method achieved a slightly
higher reduced accuracy value compared with the TF-IDF method. Moreover,
for most cases, by using the proposed CPE method, we can achieve a substan-
tially reduced ratio for averaged text sequence (Trr). This indicates that the
proposed CPE method can achieve a better performance in terms of predicted
accuracy when keeping a relatively short text sequence.

5 Conclusions

In this paper, we propose a dictionary screening method for embedding com-
pression in text classification tasks. The goal of this method is to evaluate the
importance of each keyword in the dictionary. To this end, we develop a method
called CPE to evaluate the differences in class probability estimators. With the
CPE method, each keyword in the original dictionary can be screened, and only
the most important keywords can be reserved. The proposed method leads to
a significant reduction in terms of parameters, average text sequence, and dic-
tionary size. Meanwhile, the prediction power remains competitive. Extensive
numerical studies are presented to demonstrate the empirical performance of
the proposed method.

To conclude this article, we present here a number of interesting topics for
future study. First, the proposed dictionary screening method involves a tuning
parameter (e.g., K), and its optimal value for balancing prediction accuracy and
parameter reduction needs to be learned. This is an important topic for future
study. Second, the proposed method is only used for a text classification task.
However, there are other natural language tasks, such as machine translation,
question answering, and so on. The scalability of the proposed method in these
tasks is also a very worthy study. Lastly, the proposed method is only conducted
on English and Chinese, other language types should be investigated to test its
validity.

Acknowledgements. Zhou’s research is supported in part by the National Natural
Science Foundation of China (Nos. 72171226, 11971504), the Beijing Municipal Social
Science Foundation (No. 19GLC052). Wang’s research is partially supported by the
National Natural Science Foundation of China (No. 12271012, 11831008) and the Open

468 J. Zhou et al.

Research Fund of the Key Laboratory of Advanced Theory and Application in Statistics
and Data Science (KLATASDS-MOE-ECNU-KLATASDS2101).

References

1. Acharya, A., Goel, R., Metallinou, A., Dhillon, I.: Online embedding compression
for text classification using low rank matrix factorization. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 6196–6203 (2019)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

3. Cho, K., Merrienboer, B.V., Gulcehre, C., Schwenk, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. Computer Science (2014)

4. Cybendo, G.: Approximations by superpositions of a sigmoidal function. Math.
Control Signals Systems 2, 183–192 (1989)

5. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware accel-
eration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532
(2020)

6. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. J. Mach.
Learn. Res. 15, 315–323 (2011)

7. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359–366 (1989)

8. Hossain, E., Sharif, O., Hoque, M.M., Sarker, I.H.: SentiLSTM: a deep learning
approach for sentiment analysis of restaurant reviews. In: Proceedings of 20th
International Conference on Hybrid Intelligent Systems (2020)

9. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jegou, H., Mikolov, T.: Fast-
text.zip: compressing text classification models. arXiv preprint arXiv:1612.03651
(2016)

10. Kim, Y.: Convolutional neural networks for sentence classification. Eprint Arxiv
(2014)

11. Li, F., Zhang, M., Fu, G., Qian, T., Ji, D.: A Bi-LSTM-RNN model for relation
classification using low-cost sequence features (2016)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. Computer Science (2013)

13. Raunak, V.: Effective dimensionality reduction for word embeddings. arXiv
preprint arXiv:1708.03629 (2017)

14. Sachan, D.S., Zaheer, M., Salakhutdinov, R.: Revisiting LSTM networks for semi-
supervised text classification via mixed objective function. Proceedings of the
AAAI Conference on Artificial Intelligence (2019)

15. Shu, R., Nakayama, H.: Compressing word embeddings via deep compositional
code learning. arXiv preprint arXiv:1711.01068 (2017)

16. Sparck-Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. J. Document. 28(1), 11–21 (1972)

17. Xiao, Y., Cho, K.: Efficient character-level document classification by combining
convolution and recurrent layers (2016)

18. Zhang, X., Zhao, J., Lecun, Y.: Character-level convolutional networks for text
classification. MIT Press (2015)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1708.03629
http://arxiv.org/abs/1711.01068

	Compressing the Embedding Matrix by a Dictionary Screening Approach in Text Classification
	1 Introduction
	2 Methodology
	2.1 Problem Set up
	2.2 Dictionary Screening

	3 Experiments
	3.1 Task Description and Datasets
	3.2 Model Settings
	3.3 Tuning Parameter Specification
	3.4 Competing Methods
	3.5 Performance Measures and Implementation

	4 Results Analysis
	4.1 Tuning Parameter Effects
	4.2 Performance of Compression Results
	4.3 Competing Methods

	5 Conclusions
	References

