
SCIENCE CHINA
Mathematics

. ARTICLES . January 2017 Vol. 60 No. 1: 165–176

doi: 10.1007/s11425-015-0807-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 math.scichina.com link.springer.com

A dynamic logistic regression for network link
prediction

ZHOU Jing1, HUANG DanYang1,∗ & WANG HanSheng2

1Department of Statistics, Renmin University of China, Beijing 100872, China;
2Department of Statistics, Peking University, Beijing 100871, China

Email: jing.zhou@pku.edu.cn, dyhuang89@126.com, hansheng@gsm.pku.edu.cn

Received December 7, 2015; accepted April 13, 2016; published online October 27, 2016

Abstract In social network analysis, link prediction is a problem of fundamental importance. How to conduct a

comprehensive and principled link prediction, by taking various network structure information into consideration,

is of great interest. To this end, we propose here a dynamic logistic regression method. Specifically, we assume

that one has observed a time series of network structure. Then the proposed model dynamically predicts

future links by studying the network structure in the past. To estimate the model, we find that the standard

maximum likelihood estimation (MLE) is computationally forbidden. To solve the problem, we introduce a novel

conditional maximum likelihood estimation (CMLE) method, which is computationally feasible for large-scale

networks. We demonstrate the performance of the proposed method by extensive numerical studies.
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1 Introduction

For the past decades, various online social networks have undergoing a rapid development. It is estimated

by Statista (www.statista.com) that there will be around 2.13 billion social network users worldwide

in 2016. Popular social networks such as Facebook, Twitter, WeChat and Sina Weibo have attracted

hundreds of millions of people to communicate with each other on their platforms. Facebook, for example,

has attracted about 1.42 billion active users per month, while that of Twitter is about 0.3 billion. As one

can see, social network is becoming an indispensable part of daily lives.

In the meanwhile, social network related business is also rapidly growing. For example, as reported by

Facebook annual report, its revenue in 2014 is 12.47 billion US dollars and more than 90% of its revenue

is from advertising sales. The reason for such a big advertising value is because there are a huge number

of users actively communicating on the platform. Their active communication leads to tremendous

amount of opportunities for advertising display. Intuitively, the more active a social network is, the more

opportunities for advertising display, and thus more potential advertising revenue. As a result, increasing

network activeness is always one of the top priorities for the firms’ day-to-day operation.

Practically, for a social network with a given network size, the activeness typically refers to two different

perspectives. The first one is a large amount of UGC (user generated content) with good quality. The
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second one is fast and smooth UGC propagation. For the second perspective, a well connected network

structure is essential. To improve network connectivity, one needs to recommend potentially interested

friends to each user. In the meanwhile, one also has to prevent existing links from broken. Accurate

recommendation may enhance the users’ loyalty to the network and prevent customer churn. This makes

link prediction a task of great importance [5,18]. Link prediction is a task about estimating the likelihood

for a link to exist between two nodes, given the observed network structure [11]. Most existing methods

are similarity-based algorithms [1,7,20,25,29]. They make link prediction according to various similarity

measures, which are derived from the observed network structure. Then, how to combine various similarity

measures under a unified framework is quite a challenging task [21]. See also [17, 30, 30, 32] for some

relevant discussions.

To solve the problem, we propose here a dynamic logistic regression method for link prediction. It

combines various similarity measures under a unified model framework. Specifically, assume we have

a network with size n and its network structure is observed at a sequence of time points indexed by

{t : 1 � t � T }. For any two arbitrary nodes i and j, define atij = 1 if i follows j and 0 otherwise

at time point t. Then the relationships among the nodes over different time points are represented by

a sequence of n × n adjacency matrices At = (atij) (see [16, 24, 34]). We then consider how to make

accurate prediction for future link atij by carefully studying the historical network structure information

Ft−1 = σ{As : s < t}. This leads to a novel method of dynamic logistic regression [14]. The new method

can flexibly take various network structure information into consideration.

It is remarkable that the new model allows the network structure to be extremely sparse. Furthermore,

by introducing a novel binary random effect, a number of stylized network characteristics (e.g., recipro-

cation, transitivity) can be well accommodated [12]. However, as a side effect, the resulting likelihood

function can be too complicated. This makes the standard maximum likelihood estimation (MLE) com-

putationally forbidden. To alleviate the computational cost, we propose a novel conditional likelihood

estimation (CMLE) method, which is computationally feasible for large-scale networks. We demonstrate

the efficiency of our model with both simulation studies and a real data example.

The proposed new model makes two contributions to the existing literature. First, it is an interesting

and novel time series model. Most classical time series literature focus on univariate time series [10]. Re-

cently, there is an increasing interest in multivariate time series, with particular focus on high-dimensional

data [4, 19, 27, 35]. However, to our best knowledge, the research about binary-matrix-valued time series

(i.e., At) is extremely limited. Second, in network analysis literature, much efforts have been made to

understand the mechanism for network formation. The simplest Erdös-Rényi model is a pioneer work

in this area. [9] assumed an independent condition for different links. To allow for reciprocal depen-

dence, [13] proposed the p1 model. Similar idea was further extended by [26,33], so that stochastic block

structure can be modeled. Other related literatures include, for example, the exponential random graph

model [15] and latent space model [12]. However, all these works focus on cross-sectional data, and none

of them investigate network dynamics under a time series framework.

The rest of this paper is organized as follows. Section 2 presents the model setup and the complete

likelihood theory. This leads to the conditional likelihood theory and its estimation method. To demon-

strate its finite sample performance, numerical studies based on both simulated and real datasets are

conducted in Section 3. Lastly, the article is concluded with a short discussion and the limitations in

Section 4.

2 The methodology

2.1 Model setup

We consider a network with n nodes, which are denoted as {1, . . . , n}. We further assume that the

network is consecutively observed on a sequence of equally spaced time points, indexed by {1, . . . , T }. The
relationships among the nodes over different time points are represented by a sequence of n×n adjacency

matrices At = (atij) in which atij = 1 (i �= j) if there is a link from i to j at time t, and 0 otherwise. For an
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undirected network we have atij = atji. However, throughout the rest of this article, we consider a directed

network structure, which allows atij �= atji. The goal is to model the network dynamic system, i.e., to

model the conditional distribution of At given its lagged information Ft−1 = σ{At−1,At−2, . . . ,A0}.
In practice, the structure of a large-scale social network is typically extremely sparse. This implies that

P (atij = 1) is very small. Mathematically, this amounts to assume that P (atij = 1) → 0 as n → ∞. If one

allows atij and atji to be mutually independent, we then should have P (atija
t
ji = 1) to be even smaller.

Or equivalently, the conditional probability P (atij = 1 | atji = 1) → 0 as n → ∞. On the other side, most

empirical studies suggest that the conditional probability P (atij = 1 | atji = 1) should be much larger and

theoretically should be treated as a fixed number. As a result, the two links (i.e., atij and atji) should not

be modeled independently. Instead, they have to be modeled jointly [13].

To this end, define zij = zji ∈ {0, 1} to be a binary indicator, which could be treated as a binary

random effect. Define Z = (zij) ∈ Rn×n, which is a symmetric random effect matrix. We then assume

atij = zij ã
t
ij , where ãtij ∈ {0, 1} is another independent binary indicator such that

P (ãtij = 1 | Ft−1) =
exp(βTXt−1

ij )

1 + exp(βTXt−1
ij )

, (2.1)

Xt−1
ij = (Xt−1

ij,1 , . . . , X
t−1
ij,p )

T ∈ Rp is a p-dimensional predictor derived from Ft−1, and β = (β1, . . . , βp)
T

∈ Rp is the associated regression coefficients and the primary parameters of interest. Lastly, define

Ãt = (ãtij) ∈ Rn×n. As a consequence, we have

P (atij = 1 | Ft−1) = P (zij = 1)P (ãtij = 1 | Ft−1) = αij

exp(βTXt−1
ij )

1 + exp(βTXt−1
ij )

. (2.2)

Because large-scale social network is typically extremely sparse, we should expect P (atij = 1 | Ft−1) to

be small. This implies that αij → 0 as n → ∞. However, note that atji = 1 implies that zij = zji = 1.

Consequently, conditional on atji = 1, whether atij = 1 is fully determined by ãtij . As a consequence,

P (atij = 1 | atji = 1) = exp(βTXij)/{1 + exp(βTXij)} is a fixed number. Thus, the reciprocity property

is well accommodated.

2.2 Complete likelihood

Based on the above model setup, we can analytically spell out the complete likelihood function as follows:

L(θ) =
T∏

t=2

∏
i,j

[
αij

exp(βTXt−1
ij )

1 + exp(βTXt−1
ij )

]at
ij
[
αij

1

1 + exp(βTXt−1
ij )

+ (1 − αij)

]1−at
ij

.

Then the log likelihood is

�(θ) =
T∑

t=2

∑
i,j

[(1 − atij) log{1 + exp(βTXt−1
ij )− αij exp(β

TXt−1
ij )}

+ atij{(αij + βTXt−1
ij ) + logαij} − log{1 + exp(βTXt−1

ij )}],

where θ = (βT, αij , i �= j)T ∈ Rp+n(n−1). As one can see, optimizing the above complete log likelihood

function is computationally challenging for several reasons.

(1) The summations over t and each node pair (i, j) lead to a total of Tn(n−1) terms to be computed.

For a large-scale social network, the sample size n could be a huge number. As a consequence, the scale

of Tn(n− 1) would be gigantic. This makes the computation cost of �(θ) extremely high.

(2) The dimension of θ (i.e., the parameters need to be optimized) is also extraordinarily high. It is

squared order of the network size n. This makes the already difficult computation even more challenging.
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(3) Even if one has the demanded computational power, optimizing �(θ) directly is not cost-effective.

This is because most large-scale social networks are extremely sparse. As a consequence, most node

pairs do not follow each other throughout the entire observational period. This implies that atij = 0

for every 1 � t � T with no variabilities at all. Consequently, their contribution to the log likelihood

function should be minimum. However, their associated computational cost is quite significant. This

makes optimizing �(θ) cost-ineffective.

As a consequence, this motivates us to further develop a novel estimation method, which is computa-

tionally more efficient.

2.3 Conditional likelihood

As we have explained before, network structure At is extremely sparse and atij = 0 for most t and (i, j)

pairs. Obviously, those unconnected node pairs should carry minimum information about the regression

coefficient β. This motivates us to focus on only those pairs which are connected. Specifically, for a given

time point t ∈ {2, . . . , T }, we define St−1 = {(i, j) : at−1
ij + atij > 0}. In other words, St−1 collects all the

node pairs, which are at least connected either at time t − 1 or t. Accordingly, for any (i, j) ∈ St−1, we

can only observe three possibilities. They are, respectively, (at−1
ij , atij) = (1, 0), (0, 1) and (1, 1). Their

likelihood function is given by, respectively,

P{(at−1
ij , atij) = (1, 0)} = P (zij = zji = 1)P{(ãt−1

ij , ãtij) = (1, 0)}

= αij

{
exp(βTXt−2

ij )

1 + exp(βTXt−2
ij )

}{
1

1 + exp(βTXt−1
ij )

}
.

Similarly, we can have

P{(at−1
ij , atij) = (0, 1)} = αij

{
exp(βTXt−1

ij )

1 + exp(βTXt−1
ij )

}{
1

1 + exp(βTXt−2
ij )

}
,

P{(at−1
ij , atij) = (1, 1)} = αij

{
exp(βTXt−2

ij )

1 + exp(βTXt−2
ij )

}{
exp(βTXt−1

ij )

1 + exp(βTXt−1
ij )

}
.

Then conditional on at−1
ij = 1, the likelihood for atij = 1 is given by

P (atij = 1 | at−1
ij = 1) =

exp(βTXt−1
ij )

1 + exp(βTXt−1
ij )

. (2.3)

It is remarkable that (2.3) is a standard logistic regression form with atij as the binary response, Xt−1
ij

as the predictor, and conducted on the sample S ′
t−1 = {(i, j) : at−1

ij = 1}. Specifically, the log likelihood

function that needs to be optimized is

�∗(β) =
T∑

t=2

∑
i,j

[atijβ
TXt−1

ij − log{1 + exp(βTXt−1
ij )}].

The corresponding estimator is given by β̂ = argmaxβ�
∗(β), which is referred to as the conditional max-

imum likelihood estimator (CMLE). To numerically compute β̂, a standard Newton-Raphson algorithm

can be used. Specifically, define �̇∗(β) ∈ Rp and �̈∗(β) ∈ Rp×p to be the first and second order derivatives

of �∗(β) with respect to β, respectively. Define β̂(0) = 0 be the initial estimator. We then compute

β̂(s+1) = β̂(s) − [�̈∗{β̂(s)}]−1�̇∗{β̂(s)} for s > 0. We update β̂(s) till it numerically converges. This leads

to the final estimate of β.
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3 Numerical studies

3.1 Simulation models

To demonstrate the finite sample performance of the proposed methodology, we present in this subsection

three simulation examples. These three examples are similar to each other. The only difference is the

way by which Z is generated. In the meanwhile, we can generate network structure as follows. First, we

generate n× n matrix, where each element (denoted by Uij) is independently generated from a standard

uniform distribution. We next define a0ij = I(Uij < 30/n), where I(·) is the indicator function. This

leads to the initial network structure A0 = (a0ij) ∈ Rn×n. Once Z and A0 are given, Ãt and At can be

generated according to (2.1) and (2.2) sequentially. This leads to the network structure sequence {At}.
It is remarkable that in order to dynamically generate Ãt, a number of predictors summarized from the

historical network structure need to be constructed, i.e., Xt−1
ij in (2.1). To this end, three interesting

and popularly used network statistics are considered. Their construction details are to be given in the

next subsection for illustration purpose. Lastly, the detailed generation process for Z is to be presented

according to different simulation examples.

Example 3.1 (Pseudo dyad independence model). Following [13], we generate Z0 = (z0,ij) ∈ Rn×n

as follows. We define a dyad as D0,ij = (z0,ij , z0,ji) for any 1 � i < j � n. In the dyad independence

model, it is also assumed that different D0,ijs are independent. To allow for the network sparsity, we

define P (D0,ij = (1, 1)) = 20n−1. This leads to the expected number for the mutually connected dyad

(i.e., D0,ij = (1, 1)) is of O(n). In the next step, set

P (D0,ij = (1, 0)) = P (D0,ij = (0, 1)) = 0.5n−0.8.

Accordingly, we should have P (D0,ij = (0, 0)) = 1− 20n−1 − n−0.8, which is very close to 1 for large n.

Recall that zij = zji, thus we let zij = I(z0,ji + z0,ij > 0). This leads to a symmetric Z. Define

di =
∑n

j=1 zji to be the meet in-degree of node i in Z. See Figure 1 for an example of meet in-degree

histogram in the pseudo dyad independence model in one replication. We fix T = 10, T = 15 and T = 20,

respectively in this example.

Example 3.2 (Pseudo stochastic block model). We next consider the structure generated from the

stochastic block model [26, 33], which is another popular network topology. Define K ∈ {10, 20, 50} to

be the total number of blocks and fix T = 20. Specifically, we follow [26], and randomly assign a block

label (k = 1, . . . ,K) for each node with equal probability 1/K. Next, let P (z0,ij = 1) = 0.03n−0.03

if i and j are in the same block, and P (z0,ij = 1) = 0.01n−1 otherwise. Correspondingly, the nodes

in the same block are more likely to meet each other compared with nodes from different blocks. Let

zij = I(z0,ji + z0,ij > 0) and thus we obtain Z. See Figure 2 for the histogram of meet in-degree in one

replication under the pseudo stochastic block model.
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Figure 1 A particular example of the pseudo dyad independence model. (a) Histogram of in-degree in the pseudo
dyad independence mode. (b) Visualization of the pseudo dyad independence model
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Figure 2 A particular example of the pseudo stochastic block model. (a) Histogram of in-degree in the pseudo
stochastic block model. (b) Visualization of the pseudo stochastic block model
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Figure 3 A particular example of the pseudo power-law distribution model. (a) Histogram of in-degree in the pseudo
power-law distribution model. (b) Visualization of the pseudo power-law distribution model

Example 3.3 (Pseudo power-law distribution). According to [2], a power-law distribution reflects a

popular network phenomenon. The majority of nodes have few edges but a small amount have huge

number of edges. We follow [8] and simulate Z0 = (z0,ij) ∈ Rn×n as follows. First, for each node,

d0,i =
∑

j z0,ji is generated according to the discrete power-law distribution, which is P (d0,i = k) = ck−α,

c is a normalizing constant and the exponent parameter α ∈ {2.0, 2.3, 2.5}. It is remarkable that smaller α

value implies the heavier distribution tail. Second, for the i-th node, d0,i nodes are randomly selected

to be node i’s potential friends to meet. Correspondingly, define zij = I(z0,ji + z0,ij > 0) and thus one

could get Z. The histogram of meet in-degree in one replication under the pseudo power-law distribution

is presented in Figure 3. We fix T = 20 in this example.

3.2 Three network statistics

As we have discussed before, in order to simulate Ãt by (2.1), we need to construct a predictor vector Xt
ij .

For illustration purpose, we consider here three (i.e., p = 3) popularly used network statistics. Specifically,

define Γt
i = {j : atij = 1} to be the set of nodes that i follows at time point t, Γ′t

i = {j : atji = 1} to be

the set of nodes those follow i at time point t. We then define

Xt
ij = (Xt

ij,1, X
t
ij,2, X

t
ij,3)

T ∈ R3

as follows:

(1) The momentum effect. Past empirical research suggests that people tend to behave in accordance

to what they have done before [3, 6]. As a result, we define a predictor that indicates the previous link

status between two nodes, which is

Xt
ij,1 = atij . (3.1)

Thus we know the corresponding coefficient represents a momentum effect.
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(2) The homophily effect. Classic homophily theory in sociology field suggests that people who are

connected with each other are more likely to have similar preference [23, 31]. For two arbitrary nodes i

and j, this implies that we can recommend i’s friends to j. Because grounded on the theory of homophily,

i and j should be similar to some extent. Technically, we define Xt
ij,2 to be the number of pathways of

length two between node i and node j. For example, a typical indirect connection between i and j with

length 2 could be i → k → j for some 1 � k � n, i.e.,

Xt
ij,2 =

n∑
k=1

atika
t
kj = |Γt

i ∩ Γ′t
j |, (3.2)

where |Γt
i ∩ Γ′t

j | denotes the total number in the set Γt
i ∩ Γ′t. It is remarkable that Xt

ij,2 is just the

corresponding element of A2
t .

(3) The common factor effect. Previous study also suggests that people can be influenced by some

common exogenous factors [22]. Practically, the number of mutual friends is always an important factor in

assessing link formation. So the last predictor we examine here is the number of mutual friends between i

and j. For example, i → k and j → k for some 1 � k � n. Define

Xt
ij,3 =

n∑
k=1

aikajk = |Γt
i ∩ Γt

j|. (3.3)

Notice that Xt
ij,3 is the corresponding element of AtA

T
t .

It is remarkable that other network features could also be adopted in the unified dynamic logistic

model. For example, reverse homophily effect, which is defined as

Xt
ij,4 =

n∑
k=1

atjka
t
ki = |Γt

j ∩ Γ′t
i |

and common follower effect, which is

Xt
ij,5 =

n∑
k=1

atkja
t
ki = |Γ′t

i ∩ Γ′t
j |.

Higher order network characteristics could also be involved. Once β̂ is obtained, we can construct a

conditional likelihood index (CLI) based on the network features at time point t,

CLIt(i, j) =
exp(β̂TXt−1

ij )

1 + exp(β̂TXt−1
ij )

. (3.4)

We can then predict atij = 1 if CLIt(i, j) > c for some pre-specified threshold value c. Different choice

of c leads to different true and false positive rates, which are to be comprehensively evaluated by AUC

(see [28]) in Subsection 3.4.

3.3 Estimation results

We fix

(β1, β2, β3)
T = (1.0, 0.3, 0.8)T

throughout the whole simulation studies. For each simulation example, various network sizes (n =

1, 000, n = 5, 000 and n = 10, 000) are considered, and the experiment is randomly replicated for M = 500

times. Let

β̂(m) = (β̂
(m)
k )T = (β̂

(m)
1 , β̂

(m)
2 , β̂

(m)
3 )T
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be the estimator obtained in the m-th (m ∈ {1, . . . ,M}) replication. We consider two measures to gauge

the finite sample performance. First, for a given parameter βk with 1 � k � 3, the root mean square

error is evaluated by

RMSEk =

{
M−1

M∑
m=1

(β̂
(m)
k − βk)

2

}1/2

.

Second, for each 1 � k � 3, a 95% confidence interval is constructed for βk as

CI
(m)
k = (β̂

(m)
k − z0.975ŜE

(m)

k , β̂
(m)
k + z0.975ŜE

(m)

k ),

where ŜE
(m)

k is the estimated standard error in the m-th replication, and zα is the αth quantile of a

standard normal distribution. Then, the coverage probability is computed as

CPk = M−1
M∑

m=1

I(βk ∈ CI
(m)
k ).

We report the estimation results of RMSEk and CPk for parameter βk in each example. Additionally,

we report the average CPU time for each replication (CPU in our study is 3.2GHz). See Tables 1

–3 for detailed results respectively. Consider for example Table 1. We find that, when n is fixed but T

increases, the RMSE values decrease. This is expected because in this case larger T leads to large

sample size. Similarly, if T is fixed, then RMSE value drops as n increases. Furthermore, the reported

coverage probabilities (i.e., CP) are always close to their nominal level 95%. This suggests that the

estimated standard error (i.e., ŜE) should approximate the true SE well. Similar results are obtained for

Examples 3.2 and 3.3 from Tables 2 and 3. Lastly, by Figure 4, we find that the CPU time demanded

by our method increases as the network size n increases. Its increasing pattern is approximately linear.

3.4 Link prediction results

For illustration purpose, CLI is compared with four well known local similarity indices listed in Table 4.

Those indices were developed for link prediction. They have been popularly used in practice due to

their computational feasibility for large-scale social networks. Consider for example the first index,

Table 1 Simulation results for Example 3.1 with 500 replications. The RMSE values (×10−2) are reported for every β
estimates. The CP (in %) of every estimate is given in parentheses. The average CPU computation time (s) is reported

T = 10 T = 15 T = 20

n = 1,000 n = 5,000 n = 10,000 n = 1,000 n = 5,000 n = 10,000 n = 1,000 n = 5,000 n = 10,000

β1 0.75 (94.2) 0.29 (94.6) 0.20 (95.4) 0.59 (94.8) 0.23 (95.0) 0.16 (94.0) 0.53 (92.2) 0.19 (95.6) 0.14 (92.0)

β2 3.12 (95.0) 2.84 (92.6) 2.56 (96.8) 2.55 (94.0) 2.18 (95.2) 2.12 (94.4) 2.22 (94.0) 1.86 (95.0) 1.78 (96.2)

β3 3.18 (94.8) 2.84 (95.8) 2.72 (94.8) 2.59 (95.0) 2.30 (95.4) 2.13 (95.6) 2.24 (95.0) 1.94 (94.4) 1.82 (94.4)

Time 0.1753 0.8683 1.8687 0.2765 1.4386 2.8475 0.3690 1.9012 3.8898

Table 2 Simulation results for Example 3.2 with 500 replications. The RMSE values (×10−2) are reported for every β
estimates. The CP (in %) of every estimate is given in parentheses.The average CPU computation time (s) is reported

K = 10 K = 20 K = 50

n = 1,000 n = 5,000 n = 10,000 n = 1,000 n = 5,000 n = 10,000 n = 1,000 n = 5,000 n = 10,000

β1 0.91 (94.8) 0.37 (95.0) 0.37 (96.4) 1.12 (95.6) 0.32 (95.4) 0.28 (93.8) 1.77 (93.0) 0.39 (95.6) 0.24 (94.2)

β2 3.57 (95.6) 0.65 (95.6) 0.59 (94.0) 6.64 (96.4) 0.85 (94.2) 0.47 (95.0) 16.1 (95.0) 1.62 (94.2) 0.68 (94.0)

β3 3.70 (96.6) 0.66 (95.0) 0.58 (93.8) 6.76 (95.4) 0.82 (94.8) 0.45 (96.6) 17.2 (95.4) 1.62 (95.6) 0.68 (94.4)

Time 0.1031 3.9293 16.9881 0.0515 1.6816 8.3904 0.0221 0.6067 3.0084
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Table 3 Simulation results for Example 3.3 with 500 replications. The RMSE values (×10−2) are reported for every β
estimates. The CP (in %) of every estimate is given in parentheses. The average CPU computation time (s) is reported

α = 2.0 α = 2.3 α = 2.5

n = 1,000 n = 5,000 n = 10,000 n = 1,000 n = 5,000 n = 10,000 n = 1,000 n = 5,000 n = 10,000

β1 1.06 (95.2) 0.42 (95.4) 0.28 (94.2) 1.00 (95.6) 0.44 (93.2) 0.28 (96.0) 1.08 (95.0) 0.47 (94.2) 0.33 (93.8)

β2 3.97 (93.4) 1.58 (94.8) 1.06 (97.0) 9.07 (96.4) 5.49 (95.6) 4.52 (95.0) 16.3 (94.0) 11.4 (95.6) 9.94 (95.8)

β3 3.98 (94.0) 1.61 (95.8) 1.13 (96.0) 8.74 (95.8) 5.89 (95.4) 4.72 (94.8) 16.2 (95.0) 12.4 (96.0) 9.98 (96.2)

Time 0.1957 1.0381 2.5820 0.0773 0.4377 0.9370 0.0547 0.3210 0.6474
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Figure 4 Average CPU time for each example across different sample size. The triangular line corresponds to Ex-
ample 3.1 with T = 10. The circle line corresponds to Example 3.2 with K = 50 and the square line corresponds to
Example 3.3 with α = 2.5

Table 4 Local similarity indices

Method Index

Common neighbors index (CNI) |ΓT
i ∩ Γ′T

j |
Salton index (SI)

|ΓT
i ∩Γ′T

j |√
dTi ×dTj

Hub promoted index (HPI)
|ΓT

i ∩Γ′T
j |

min{dTi ,dTj }

Hub depressed index (HDI)
|ΓT

i ∩Γ′T
j |

max{dT
i
,dT

j
}

i.e., the common neighbors index (CNI). By Table 4, CNI is defined to be |ΓT
i ∩ Γ′T

j |. Recall that

ΓT
i = {j : aTij = 1} is defined to be the set of nodes that i follows, and Γ′T

i = {j : aTji = 1} is defined to

be the set of nodes those follow i at time point T . Thus, CNI counts the number of common followees

between i and j. Then, all the (i, j)-pairs should be sorted according to their CNI values in a descending

order. Those pairs with top CNI values should be predicted as 1, while the rest to be 0. Other indices are

various modifications about CNI, according to their in-degree dTi =
∑

j a
T
ji = |Γ′T

i |. For a more detailed

discussion about various local similarity indices, we refer to [21].

For each simulation replication, n is fixed to be 1,000. We use data from time points 1 to T − 1

to estimate CMLE β̂. Its prediction accuracy is then evaluated by data from time point T in terms

of AUC (see [28]). To save computation time, only those pairs with aT−1
ij = 1 are used for prediction

evaluation. The resulting AUC values are average across different simulation replications, and then

reported in Table 5. We find that CLI performs better than its competitors in terms of AUC. This is

reasonable because CLI is a more comprehensive estimate and takes information from different sources

into consideration.
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Table 5 AUC results in the scenario of aT−1
ij = 1 in different examples

Method CLI CNI HDI HPI SI

Example 3.1

T = 10 0.5786 0.5612 0.5612 0.5611 0.5611

T = 15 0.5785 0.5631 0.5630 0.5630 0.5630

T = 20 0.5782 0.5640 0.5639 0.5639 0.5639

Example 3.2

K = 10 0.5836 0.5681 0.5677 0.5457 0.5459

K = 20 0.5482 0.5385 0.5384 0.5112 0.5113

K = 50 0.5211 0.5164 0.5163 0.5071 0.5071

Example 3.3

α = 2.0 0.6288 0.6173 0.5767 0.5600 0.5450

α = 2.3 0.5455 0.5389 0.5346 0.5137 0.5134

α = 2.5 0.5209 0.5173 0.5162 0.5074 0.5073

Table 6 Real data results with T = 20

Estimation

Coefficient Estimate ̂SE P-value

Momentum effect 7.3633 0.0464 0

Homophily effect 0.4373 0.0269 0

Common factor effect −0.0108 0.0241 0.6549

Reverse homophily effect 0.3045 0.0238 0

Common follower effect −0.2606 0.0247 0

Prediction: Conditional on aT−1
ij = 1

Method CLI CNI HDI HPI SI

ÂUC 0.7063 0.6822 0.6162 0.5003 0.5003

Prediction: Conditional on aT−1
ij = 0

Method CLI CNI HDI HPI SI

ÂUC 0.8160 0.8136 0.7033 0.6632 0.6481

3.5 Sina Weibo network analysis

We next illustrate the performance of the proposed method by a real data analysis example. The data

are collected from Sina Weibo (www.weibo.com), which can be viewed as a Twitter-type social media in

Chinese. For illustration purpose, our dataset contains n = 8,591 active followers of an official Weibo

account. Their follower-followee relationships within these n nodes are also recorded for a total of T = 20

days. The detailed estimation and prediction results are given in Table 6. Except for the proposed

three useful network statistics in the simulation, we also include two more effects. They are, respectively,

reverse homophily effect, and common follower effect as defined in the previous section. By Table 6, we

find that all of the coefficients are significant except common factor effect. Moreover, the momentum

effect is the most important factor. Lastly, the CLI method always predicts best in terms of AUC.

However, its relative advantage over CNI is practically ignorable, if aT−1
ij = 0.

4 Conclusion

To conclude the paper, we discuss here a number of interesting topics for future research. First, in order

to predict At, only network statistics derived from At−1 are numerical studied in this work. Higher order

network features (e.g., statistics derived based on At−1 and At−2) are to be investigated in the future.

Second, we find CLI performs the best in presence of strong momentum effect. This is true if the network

structure changes slowly. However, for rapidly changed network structure (e.g., a telecommunication
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network), whether CLI can still perform competitively is not clear at this moment. Lastly, we assume

here that β is fixed across different time points. In fact, one can reasonably expect that β should

dynamically change as t increases. Then, how to model such a time series dynamics for β is another

interesting topic for future study.
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