
Neurocomputing 440 (2021) 197–206
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Brief papers
Progressive principle component analysis for compressing deep
convolutional neural networks
https://doi.org/10.1016/j.neucom.2021.01.035
0925-2312/� 2021 Published by Elsevier B.V.

⇑ Corresponding author.
E-mail addresses: jing.zhou@ruc.edu.cn (J. Zhou), qihaobo_gsm@pku.edu.cn (H.

Qi), yu.chen@pku.edu.cn (Y. Chen), hansheng@pku.edu.cn (H. Wang).
Jing Zhou a, Haobo Qi b,⇑, Yu Chen b, Hansheng Wang b

aCenter for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872, China
bGuanghua School of Management, Peking University, Beijing 100871, China
a r t i c l e i n f o

Article history:
Received 21 May 2020
Revised 6 January 2021
Accepted 8 January 2021
Available online 18 January 2021
Communicated by Zidong Wang

Keywords:
CNN compression
model acceleration
progressive PCA
kernel-wise reduction
a b s t r a c t

In this work, we propose a progressive principal component analysis (PPCA) method for compressing
deep convolutional neural networks. The proposed method starts with a prespecified layer and progres-
sively moves on to the final output layer. For each target layer, PPCA conducts kernel principal compo-
nent analysis for the estimated kernel weights. This leads to a significant reduction in the number of
kernels in the current layer. As a consequence, the channels used for the next layer are also reduced sub-
stantially. This is because the number of kernels used in the current layer determines the number of
channels for the next layer. For convenience, we refer to this as a progressive effect. As a consequence,
the entire model structure can be substantially compressed, and both the number of parameters and
the inference costs can be substantially reduced. Meanwhile, the prediction accuracy remains very com-
petitive with respect to that of the baseline model. The effectiveness of the proposed method is evaluated
on a number of classical CNNs (AlexNet, VGGNet, ResNet and MobileNet) and benchmark datasets.
The empirical findings are very encouraging. The code is available at https://github.com/zhoujing89/

ppca.
� 2021 Published by Elsevier B.V.
1. Introduction

In recent years, there has been a surge of interest in employing
deep convolutional neural networks (CNNs) in various fields, such
as image classification and object detection [1,2]. The state-of-the-
art results of CNNs have attracted considerable attention from both
academia and industry. However, the application of cumbersome
CNNs often requires a vast number of parameters, which are
expensive in terms of both computation and storage. This hinders
the employment of CNNs on low-end devices, such as mobile
phones. One particular issue is that mobile devices often have very
limited storage, memory, and computation power resources.
Therefore, it is essential to develop highly compressed deep CNNs
that have relatively low computational costs and high speedup in
real-world applications. This requirement has made deep CNN
compression an important research topic.

In a recent review paper, [3] summarized approaches for model
compression and acceleration into four categories: compact model,
tensor decomposition, data quantization and network sparsifica-
tion. Our research is mostly related to the category of tensor
decomposition but with a clear difference. To better illustrate this
idea, we start with a standard CNN model structure as shown in
the top panel in Fig. 1. Assume that the input is a 3-D tensor with
d channels. We next apply a convolution kernel with size k� k to
this tensor. Because the input tensor has d channels, the corre-
sponding kernel weights should be a tensor of size k� k� d. In
most cases, one kernel is insufficient for the desired accuracy. It
is thus typical to employ a large number of convolution kernels.
Let n be the total number of kernels used. This makes the kernel
weight tensor a 4-D tensor of size n� k� k� d. This leads to a total

of ndk2 weight parameters. Consequently, a large number of
weight parameters are needed if the number of kernels (i.e., n) is
large for many layers.

In fact, the powerful and sustainable effect of a large n value
goes beyond the current layer, progressively affecting the next
layer as shown in the top panel in Fig. 1. By applying n kernels
(with size k� k� d) to the input tensor, we can obtain an output
feature map with a total of n channels. In other words, the output
feature map is also a tensor but of depth n. If another kernel with
size (for example) k� k needs to be applied to this output tensor,
the kernel weight tensor should be of size k� k� n. This leads to

a total of nk2 weight parameters to be estimated. If, once again, a
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Fig. 1. Illustration of PPCA methods. Cubes represent feature maps, and stacked rectangles represent convolution kernels. Solid lines indicate convolution operations, and the
dashed lines indicate compression operations. The top panel represents the baseline model, and the bottom panel represents the reduced model.
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total of n kernels are employed, the total number of parameters

needed by this output layer becomes n2k2, which is quadratic in
n and could be very large.

The above discussion suggests that it would be of great practical
interest to perform kernel reduction for every possible layer while
sacrificing as little accuracy as possible. By doing so, the entire CNN
model structure can be greatly compressed, as seen in the bottom
panel in Fig. 1. This would lead to a significant reduction in terms
of not only the number of parameters but also inference costs. In
fact, such a possibility does exist. Ample empirical evidence sug-
gests that the estimated kernel weights from the same CNN layer
are often highly correlated with each other. This becomes the solid
empirical foundation for model compression.

Specifically, we propose here a simple and effective PPCA solu-
tion, where PPCA stands for progressive principal component anal-
ysis. It starts with a designated CNN layer and then is applied to
subsequent layers in a progressive manner. For a given CNN layer
with n convolution kernels, the estimated kernel weights are likely
to be heavily correlated. This is particularly true if the number of
kernels (i.e., n) is relatively large. Therefore, most kernel weights
can be well approximated by linear combinations of a few base
weights. Accordingly, a novel kernel principal component analysis
can be conducted. The resulting eigenvalues are then analyzed. In
most cases, very few top eigenvalues can explain a significant por-
tion of the total variability of the tensor weights. Let n� be the min-
imal number of top eigenvalues such that their explained total
variability exceeds a prespecified threshold value (e.g., 95%). This
suggests that the original n weight tensors could be well approxi-
mated by only n� base weights. Consequently, it might be unneces-
sary to keep a large number of kernels (n) for the target layer.
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Instead, a much reduced number, n�, might be sufficient. This con-
stitutes our kernel-PCA technique.

We then apply this kernel-PCA technique to every subsequent
layer progressively up to the output layer. This leads to a reduced
CNN that shares the same overall structure as the baseline CNN.
More specifically, both the baseline and reduced CNNs share the
same number of layers and kernel sizes, but the reduced CNN likely
has a greatly reduced depth. The key difference between the two
CNNs is that the number of kernels and thus channels used by
the reduced CNN could be much smaller than that of the baseline
CNN; see Fig. 1. This leads to a significant reduction in terms of
parameters and inference costs. If necessary, the whole process
can be further iterated a number of times so that the CNN can be
further compressed.

Compared with previous model compression methods, PPCA
has a number of unique features. First, for many previously pub-
lished methods, model compression was conducted only for the
input images [4–6], a single or a small number of convolutional
layers [7,8], or only dense layers [9]. In contrast, PPCA can be per-
formed for every possible layer. Second, unlike some previous
methods [9,10], PPCA does not increase the number of layers in
the CNN. Third, PPCA reduces the number of kernels and thus
channels whenever possible, while most other methods keep the
number of channels unchanged for the existing layer [11–15].
Lastly, PPCA can significantly reduce the complexity of running
time, which could be seen as a non-marginal contribution to the
existing practice and literature.

This paper is organized as follows. Section 2 reviews some of
the related literature. Section 3 develops the PPCA method. Sec-
tion 4 presents extensive experiments on the proposed method,
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and their results are summarized in Section 5. Section 6 concludes
the paper with a brief discussion for future research.
2. Related work

Many 2-D projection methods have been proposed in the past
for image classification and face recognition. For example, [4]
developed a 2-D PCA method for feature extraction. This method
was soon generalized by [5]. They suggested that feature extrac-
tion worked not only for the row dimension but also for the col-
umn dimension of images. This led to a bidirectional 2-D PCA
method. To preserve local image structure, [6] developed a 2-D
locality-preserving projection (2-D LPP) method, while [16] pro-
posed a 2-D neighborhood-preserving projection (2-D NPP)
method. For a better prediction accuracy, [17] combined a 2-D
PCA method with SVM. Ref. [18] proposed a sparse 2-D local dis-
criminant projections (S2-D LDP) method. Ref. [19] also used the
2-D PCA method for filter analysis, which led to a 2-D PCA-Net
method. This method was further improved by [14] using l1 penal-
ization. Ref. [15] utilized low-rank learning techniques for the 2-D
NPP method with improved robustness and better discriminative
ability. Undoubtedly, these pioneering methods are extremely use-
ful for dimension reduction. However, they are only performed for
the observed inputs (i.e., images, subimages or vectors).

Another set of literature focuses on low-rank approximation
[12,7,8,20,13]. The common focus of these methods is layer decom-
position. Ref. [20] proposed a 3-D decomposition method to com-
press all the convolutional layers. Ref. [13] presented a Tucker
decomposition method for model compression. Ref. [11] proposed
a model compression method for recurrent neural network (RNN)
and long short-time memory (LSTM) models. Ref. [9] focused on
layer pairs with dense connections in a DNN model. To implement
the method, several extra layers were created for the baseline
model. Ref. [10] proposed a rank-constraint dimension reduction
method for the weight matrix between the input layer and the first
hidden layer in a DNN model. Their method requires an intermedi-
ate layer to be inserted between layers. None of these methods
reduces the number of kernels and thus channels for the existing
layers.

For a more comprehensive literature survey in this regard, we
refer to [3] for an excellent review. To summarize, we find that
the existing research on model compression can be further
improved from the following perspectives. First, we need a method
that is sufficiently generalized so that it can be applied to every
possible layer. Second, the method should not increase the number
of layers. Lastly, the newmethod should reduce the number of ker-
nels and thus channels as much as possible.
3. Methodology

3.1. The PPCA method

Consider a standard CNN with a total of T layers. For any layer t
(1 6 t 6 T), assume the depth of the feature map is dt . Then, nt ker-
nels of size kt � kt are applied to this feature map. This leads to a

weight tensor of size nt � kt � kt � dt with a total of ntdtk
2
t param-

eters. Because the number of kernels used in the tth layer (i.e., nt)
determines the depth of the feature map for the next layer (i.e.,
dtþ1), we should have nt ¼ dtþ1. The corresponding kernel weight
tensor should be of size ntþ1 � kt � kt � nt ¼ ntþ1 � kt � kt � dtþ1.

A total of ntþ1ntk
2
t ¼ ntþ1dtþ1k

2
t parameters are involved. For the

(t þ 1) th layer, this number could be large if nt and ntþ1 are large.
Therefore, the objective of PPCA is to reduce the number of kernels
(i.e., nt) and thus the number of channels (i.e., dtþ1) as much as pos-
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sible. Of course, this should be done in a very careful way so that
the predictive power is not substantially sacrificed.

Recall that the feature map of the tth layer is also a tensor but of
depth dt . A total of nt kernels of size kt � ktare applied to this feature
map. This leads to a weight tensor of size nt � kt � kt � dt . This ten-
sor can be written as W ¼ ðxi;x;y;jÞ 2 Rnt�kt�kt�dt with
1 6 i 6 nt ;1 6 x; y 6 kt , and 1 6 j 6 dt . To reduce the number of ker-
nels used in this layer (i.e., nt), a novel principal component analysis
should be conducted forW. To this end,we reshape the 4-D tensorW

into a standard 2-D matrix format as V ¼ ðvs;iÞ 2 Rðk2t dt Þ�nt . In other

words, V is a ðk2t dtÞ � nt matrix with wi;x;y;j ¼ v s;i and
s ¼ ðx� 1ÞðktdtÞ þ ðy� 1Þdt þ j. Note that the bias terms are not dis-
cussed here for notation simplicity purposes. However, they should
be taken into consideration for practical implementations.

We next centralize V by column so that its column mean is 0.

We then construct the covariance matrix as R ¼ V>V=ðk2t dtÞ. Next,
we perform SVD on R as

R ¼ UKU> ¼
Xnt

i¼1

kiuiu>
i ; ð1Þ

where U ¼ ðu1; u2; � � � ;unt Þ is an orthonormal matrix and K =
diagðk1; k2; � � � ; knt Þ with k1 P k2; � � � P knt is a diagonal matrix. Here,
ki is an eigenvalue of R, and ui is the corresponding eigenvector.
Obviously, these quantities (i.e., R;U;K; ki, and ui) are layer depen-
dent. Thus, a subscript t should be used. However, for the sake of
notation simplicity, the subscript t is omitted. To determine the
appropriate number of principal components (e.g., rank), we use
the cumulative variability contribution rate as a criterion. For any
positive integer 1 6 m 6 nt , the rate is defined as

rm ¼
Xm

i¼1

ki=
Xnt

i¼1

ki;

Then, the number of kernels that need to be retained is given by n�
t ,

which is the smallestm such that rm > rmin and rmin is a prespecified
variability threshold value (e.g., 90%). For convenience purposes, we
refer to the above process as the kernel-PCA technique.

Then, the PPCA method is extended by applying the above
kernel-PCA technique progressively to every designated layer.
Practically, it should start from a prespecified starting layer (e.g.,
the t0th layer) and progressively move on to the final output layer.
Accordingly, the layers earlier than t0 (i.e., t < t0) remain
unchanged. We then define n�

t ¼ nt for t < t0. Once the kernel-
PCA operation is progressively accomplished for every designated
layer, it can be restarted again from the prespecified starting layer
for further model compression. This might lead to multiple itera-
tions. Denote the total number of iterations by niter . This leads to
the final output fn�

t : 1 6 t 6 Tg, and a greatly reduced CNN is pro-
duced. Therefore, the reduced model should be retrained. As a
result, the information contained in the training data can be fur-
ther utilized.

The reduced CNN shares the same overall structure as the base-
line CNN. Both the baseline and reduced CNNs share the same
number of layers and kernel sizes (but the reduced CNN likely
has a greatly reduced depth). The key difference is that the reduced
CNN has a much smaller number of kernels and thus channels for
many layers than the baseline model; see Fig. 1. Obviously, this
leads to a significant reduction in terms of parameters and infer-
ence costs.

3.2. Tuning parameters

Even though the proposed PPCA method is conceptually simple,
its practical implementation is not trivial. It involves three impor-
tant tuning parameters: the variability threshold value rm, the
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starting layer t0, and the total number of iterations niter . For a given
CNN, these tuning parameters should be practically fine-tuned to
achieve the best empirical performance.

The first tuning parameter is the variability threshold rm. It lar-
gely determines the reduced number of kernels for the target layer.
Generally, the smaller the rm value is, the higher the reduction rate
that can be achieved, and thus a smaller number of parameters is
obtained. In our simulation experiments, values between 85%
and 99% are studied.

The second tuning parameter is the starting layer t0. Our expe-
rience suggests that the earlier PPCA is started, the higher the
reduction rate that can be achieved. However, we should not start
PPCA too early. Otherwise, the CNN could be overcompressed and
the resulting prediction accuracy could be significantly degraded.
In fact, for many benchmark CNNs (e.g., VGG), most parameters
are incorporated in the later layers (i.e., those layers close to the
final output layer). We thus suggest not starting PPCA too early.

The third tuning parameter is the number of iterations. As one
can expect, a greater number of iterations leads to higher reduction
ratios. Unfortunately, this often comes at a considerable cost of
predictive power. Our empirical experience suggests that optimal
performance is often achieved within the first two iterations.
3.3. Progressive dimension reduction effect

It is remarkable that a reduction in the number of kernels used
in the current layer should progressively determine the number of
channels for the next layer. Consequently, a reduction in the num-
ber of kernels for one layer can lead to parameter reduction for
both the current and the next layers. We refer to this as the pro-
gressive effect.

The progressive effect leads to a significant reduction in param-
eters and running time complexity. To better explain this idea, con-
sider, for example, a standard CNN as the baseline model. Assume
the depth of its feature map for every layer to be the same, that
is, dt ¼ d for some d > 0. Further assume the number of kernels
used by each layer is also the same, that is, nt ¼ n for some n > 0.
The number of kernels used by the current layer (i.e., nt) determines
the channel depth for the next layer (i.e., dt). We should have
n ¼ nt ¼ dtþ1 ¼ d for most ts. For simplicity, we assume
n ¼ d ¼ dt ¼ nt for every 1 6 t 6 T. Last, assume that the kernel size
used for each layer is also the same, kt � kt ¼ k� k. Suppose the
input feature map for layer t is of sizeMt �Mt . Then the size of out-
put feature map for layer t is given by ðMt � kþ 1Þ � ðMt � kþ 1Þ
(assume stride size equal to 1). Recall that there are a total of T lay-
ers. Then, we can easily calculate the total number of parameters
and running time complexity needed by a baseline CNN. The total

number of parameter is given by Tk2n2 and the total running time

complexity is OðPT
t¼1ðMt � kþ 1Þ2k2n2Þ. Remarkably, both of them

are quadratic (not linear) functions in n. If there were no progres-
sive effects, this would be a linear function in n. Assume that we
can reduce the number of kernels used by each layer from n to
approximately n=2 (i.e., by 50%). Then, the total number of param-

eters required by the reduced model becomes Tk2n2=4 and the total

running time complexity becomes OðPT
t¼1ðMt � kþ 1Þ2k2n2=4Þ.

This represents a 75% reduction both in terms of parameters and
running time complexity.
4. Experiments

4.1. CNN models and datasets

To demonstrate its empirical performance, the proposed PPCA
method is evaluated on a number of classical CNNs and benchmark
200
datasets. The classical CNNs are AlexNet (e.g., approximately 30
million parameters) [21], VGG (e.g., approximately 15 million
parameters) [1], ResNet (e.g., approximately 0.47 million parame-
ters) [2], and MobileNet (e.g., approximately 3 million parameters)
[22]. The benchmark datasets are the CIFAR10, CIFAR100, SVHN
[23,24] and CatDog dataset released by Kaggle in 2013.

4.2. Performance measures

Following the existing literature [25,26], we consider two met-
rics to gauge the empirical performances of different compression
methods: the parameter reduction ratio (Prr) and the FLOP reduc-
tion ratio (Frr). Meanwhile, the out-of-sample prediction accuracy
(Acc) is also monitored.

4.3. Competing methods

For comparison purposes, a total of three competing methods
are studied, and a summary of their empirical performance as
reported in the literature is provided: NS [25], SFP [27] and COP
[26]. More specifically, NS [25] proposed a network slimming
approach by enforcing channel-level sparsity. The key idea is to
identify and prune unimportant layers using BN scaling factors.
SFP [27] proposed a soft filter pruning (SFP) method for model
acceleration. The key idea is to cut appropriately defined and
unnecessary convolution kernels. COP [26] proposed an effective
way to detect redundant filters in a network. The key idea is to
evaluate the importance of a kernel by a novel correlation measure.

4.4. Implementation details of the CNNs

All classical CNNs (i.e., AlexNet, VGG, ResNet and MobileNet)
are trained on each benchmark dataset (i.e., CIFAR10, CIFAR100,
SVHN and CatDog). This leads to a total of 4� 4 ¼ 16 working
models. All the working models are trained using the stochastic
gradient descent (SGD) algorithm with a momentum effect of
0.9. The batch size is fixed to 128 for all working models. The
weight decay rate is set to 0.0001 with an l2-norm regularizer for
AlexNet, ResNet, and MobileNet. The weight decay rate is set to
0.0005 with an l2-norm regularizer for VGG. Different learning rate
updating strategies are used for different training combinations.
Finally, a total of 200 epochs are conducted for each working
model. For each working model, we choose the epoch with the
maximum prediction accuracy as the baseline model. All the
experiments were run on a Tesla K80 GPU with 11 GB memory.

4.5. Tuning Parameter Specification for PPCA

As described earlier, a total of three tuning parameters are used
by PPCA and are fine-tuned on real datasets for each CNN: the vari-
ability threshold value rm, the starting layer t0, and the total num-
ber of iterations niter . For the first tuning parameter (i.e., the
variability threshold value), three different values are considered:
85%, 90%, and 95%.

The second parameter is the starting layer t0. Different starting
layers are used for different CNNs. For VGG, four different starting
layers are considered, that is, t0 2 f3;4;5;6g. For AlexNet, three dif-
ferent starting layers are studied, that is, t0 2 f2;3;4g. For Mobile-
Net, four different starting layers are investigated, that is,
t0 2 f3;4;5;6g.

The ResNet model contains a total of 15 residual blocks classi-
fied into three different groups. The first group contains 1–6 blocks
with 16 convolution kernels. The second group contains 7–11
blocks with 32 convolution kernels. The last group contains 12–
15 blocks with 64 convolution kernels. The starting layer for
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ResNet is set to be the first convolutional layer in the 2nd or 3rd
group.

The last tuning parameter is the number of iterations niter . Our
empirical experience suggests that it cannot be too large. Other-
wise, the CNN could be overcompressed, and the resulting predic-
tion accuracy could be very poor. Accordingly, we set niter 2 f1;2g
for VGG, AlexNet and ResNet, and niter ¼ 1 for MobileNet.
5. Results

5.1. Tuning parameter effects

In this subsection, we study the impact of the three tuning
parameters (variability threshold rm, starting layer t0, and number
of iterations niter). Three measures are used to gauge the finite sam-
ple performance: prediction accuracy (Acc), the parameter reduc-
tion ratio (Prr), and the FLOP reduction ratio (Frr). For illustration
purposes, we use VGG with the CIFAR10 dataset as an example.

First, consider the variability threshold value rm. For this exper-
iment, three different values are studied: rm ¼ 85%; rm ¼ 90%, and
rm ¼ 95%. For each rm, a total of 8 experiments are conducted. Each
experiment corresponds to different combinations of t0 and niter .
Then, the prediction accuracy (Acc), parameter reduction ratio
(Prr), and FLOP reduction ratio (Frr) for those 8 experiments are
summarized.

The detailed results are given in Fig. 2. As seen in the left panel
of Fig. 2, we find that as long as the variability threshold value is set
to be no less than rm ¼ 90%, little predictive power would be sac-
rificed. In fact, a closer look reveals that the resulting prediction
accuracy (Acc) could be even higher than that of the baseline
model. However, in the middle panel of Fig. 2, we find that the
parameter reduction ratio (Prr) could be substantial. In the case
of rm ¼ 90%, the Prr is much larger than 80%. This suggests that
the baseline model can be substantially compressed with little sac-
rifice in predictive power. Last, in the right panel of Fig. 2, we find
that the reduction in FLOPs is also substantial. With rm ¼ 90%, the
resulting Frr is far greater than 80%. This suggests that the infer-
ence cost of the reduced model can also be significantly reduced.

Next, we study the second tuning parameter, that is, the start-
ing layer t0. In this case, we consider a total of 4 different starting
layers: t0 ¼ 3; t0 ¼ 4; t0 ¼ 5, and t0 ¼ 6. For each fixed t0, we con-
duct a total of 6 experiments. Each experiment corresponds to a
different combination of rm and niter . The detailed results are given
in Fig. 3. In the middle and right panels of Fig. 3, we find that earlier
starting layers result in greater parameter and FLOP reduction
ratios. However, this might come at the cost of prediction accuracy
Fig. 2. Detailed experimental results for VGG on the CIFAR10 datasets. Three differen
performance measures are summarized: accuracy (Acc), the parameter reduction ratio (Pr
the accuracy of the baseline model.
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(Acc). If the starting layer is set to be too early (e.g., t0 ¼ 3), the
resulting Acc could be highly unstable; see the left panel of
Fig. 3. In many cases, the accuracy is much worse than that of
the baseline model. However, if the starting layer is appropriately
specified (e.g., t0 ¼ 5), little prediction accuracy would be sacri-
ficed. In fact, it is clearly better than that of the baseline model
in most cases. Meanwhile, the parameter and FLOP reduction ratios
remain substantial. Specifically, the median values of Prr and Frr
are approximately 80% for t0 ¼ 5.

The last tuning parameter is the number of iterations niter . In
this case, we investigate 2 different values: niter ¼ 1 and niter ¼ 2.
For each fixed niter , a total of 12 experiments are conducted. Each
experiment corresponds to a different combination of rm and t0.
The detailed results are given in Fig. 4. As expected, a larger niter

value leads to higher parameter and FLOP reduction ratios, as
shown in the middle and right panels of Fig. 4. However, the left
panel of Fig. 4 suggests that niter ¼ 2 might not be a good choice
for this particular example because it leads to an overcompressed
model structure and thus a substantially degraded prediction accu-
racy. For this example, niter ¼ 1 is clearly the optimal choice. The
resulting median values of Prr and Frr remain close to 80%.

5.2. Prediction and compression trade-off

On the one hand, the proposed PPCA method aims to compress
a CNN model as much as possible. On the other hand, an overcom-
pressed CNN model might suffer from a significant loss of predic-
tion accuracy. Thus, it is of great importance to understand the
trade-off between the prediction accuracy and model compression.
Obviously, they should be appropriately balanced.

To this end, we use VGG, ResNet and MobileNet together with
CIFAR100 as examples. For each CNN model and dataset combina-
tion, 3 different variability thresholds (rm 2 f85%;90%;95%g) are
considered. The number of iterations is set to niter 2 f1;2g for
VGG and ResNet and niter ¼ 1 for MobileNet. The starting layer is
set to t0 2 f3;4;5;6g for VGG and MobileNet and t0 2 f3;8g for
ResNet. This leads to a total of 24 combinations for VGG, 12 com-
binations for ResNet, and 12 combinations for MobileNet. For each
experiment, we summarize its prediction accuracy (Acc) and the
parameter reduction ratio (Prr). Their relationships are plotted in
the top panel of Fig. 5. The red line represents the accuracy of
the baseline model, and the blue line is 2% below the red line. Sim-
ilar scatter plots are also provided for the FLOP reduction ratio
(Frr). The detailed results are given in the bottom panel of Fig. 5.

From the top panel of Fig. 5, we can draw the following conclu-
sions. For VGG and ResNet, we find that the accuracy gradually
decreases as the parameter reduction ratio increases. Specifically,
t values of the variability threshold are considered (rm ¼ 85%;90%;95%). Three
r), and the FLOP reduction ratio (Frr). The red dashed line in the left panel represents



Fig. 3. Detailed experimental results for VGG on the CIFAR10 datasets. Four different starting layers are considered (t0 ¼ 3;4;5;6). Three performance measures are
summarized: accuracy (Acc), the parameter reduction ratio (Prr), and the FLOP reduction ratio (Frr). The red dashed line in the left panel represents the accuracy of the
baseline model.

Fig. 4. Detailed experimental results for VGG on the CIFAR10 datasets. Two different numbers of iterations are considered (niter = 1,2). Three performance measures are
summarized: accuracy (Acc), the parameter reduction ratio (Prr), and the FLOP reduction ratio (Frr). The red dashed line in the left panel represents the accuracy of the
baseline model.
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more than half of the reported VGG cases falling below the blue
line. This indicates that an overreduced model may lose competi-
tiveness in terms of accuracy. ResNet seems also very sensitive to
the parameter reduction ratio, as there are eight cases that fall
below the blue line. However, the story is somewhat different for
MobileNet. It seems that MobileNet is not very sensitive to the
parameter reduction ratio. Almost all the cases are around the
red line and the blue line.

The bottom panel of Fig. 5 displays the relationship between the
FLOP reduction ratio (Frr) and prediction accuracy (Acc). The pat-
terns are qualitatively similar to those seen in the top panel.

5.3. Fine-tuned PPCA results

In this subsection, we report the fine-tuned PPCA results so that
their optimal performance can be demonstrated. The entire study
setup is nearly identical to that described above. However, for
the best empirical performance, we try to extend the search scope
for all the tuning parameters. As demonstrated in the previous sub-
section, it appears that increasing the number of iterations (e.g.,
niter > 2) can hardly be helpful. Similarly, the starting PPCA at too
early a layer is unlikely to be wise either. Consequently, the only
possibility left is to extend the search scope for rm. Accordingly,
every value in f85%;86%; � � � ;99%g is tested for rm in this subsec-
tion. The best results in terms of prediction accuracy (Acc) are
summarized in Table 1.

From Table 1, we can draw the following conclusions. First, for
all cases, the baseline models can be compressed substantially
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using PPCA with little sacrifice of accuracy. For example, the value
of Prr and Frr could be more than 85% in the case of MobileNet on
SVHN with no sacrifice of accuracy. Second, we report that for
many cases, the prediction accuracy of the reduced model is higher
than that of the baseline model. For example, for the VGGmodel on
the CIFAR10 dataset, the prediction accuracy of the baseline model
is as high as 92.66%, while that of the reduced model is further
improved to 94.06%. To summarize, we find that the proposed
PPCA method works quite well on all CNNs and datasets under
study.

5.4. Competing methods

Finally, we compare the performance of PPCA with a number of
important competing methods, which were discussed in section IV.
For comparison purposes, we include in Table 2 only those CNN
and dataset combinations whose empirical results are reported in
the existing literature. As a result, two classical CNNs (i.e., VGG
and ResNet) and two benchmark datasets (CIFA10 and CIFA100)
are included.

The results for VGG are summarized in the top panel of Table 2.
We find that the results are very encouraging. PPCA demonstrates
outstanding model compression with little sacrifice in predictive
power. For example, for the CIFA10 database, the DAcc value (i.e.
the difference in the Acc between the baseline model and the
reduced model) of the PPCA method is only �0.05. This suggests
that the drop in Acc from baseline model to the reduced model is
as low as 0.05%. The corresponding parameter reduction ratio is



Table 1
Fine tuned PPCA results for all CNNs and datasets combination. Alg is the algorithm name. Baseline Acc is the prediction accuracy of the baseline model. Reduced Acc is the
prediction accuracy of the reduced model. DAcc is the difference between the baseline Acc and reduced Acc. Prr is the parameter reduction ratio, and Frr is the FLOP reduction
ratio.

Datasets Alg Baseline Acc (%) Reduced Acc (%) DAcc (%) Prr (%) Frr (%)

CIFAR10 AlexNet 90.42 90.31 �0.11 63.7 52.9
VGG 92.66 94.06 +1.40 59.3 59.3

ResNet 92.96 92.67 �0.29 42.8 43.0
MobileNet 91.85 91.11 �0.74 69.4 69.9

CIFAR100 AlexNet 65.27 63.29 �1.98 69.2 62.5
VGG 70.87 70.64 �0.23 45.6 45.6

ResNet 67.90 67.38 �0.52 30.7 30.8
MobileNet 68.98 67.61 �1.37 70.0 70.9

SVHN AlexNet 95.71 96.00 +0.29 82.2 71.8
VGG 96.59 97.08 +0.49 45.2 45.3

ResNet 96.74 96.76 +0.02 56.7 57.0
MobileNet 95.69 95.71 +0.02 86.4 86.8

CatDog AlexNet 87.40 87.59 +0.19 78.2 66.8
VGG 90.28 90.43 +0.15 84.7 84.8

ResNet 91.06 90.07 �0.99 37.2 37.4
MobileNet 85.42 87.66 +2.24 67.3 67.7

Fig. 5. Top panel: Parameter reduction rate (Prr) and prediction accuracy (Acc) for VGG, ResNet, and MobileNet. Bottom panel: FLOP reduction rate (Frr) and prediction
accuracy (Acc) for the same CNNs. The red line is the prediction accuracy for the baseline model. The blue line is 2% below the red line.
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as high as 92.7%, which ranks as the 2nd best parameter reduction
ratio among the compared methods. Meanwhile, the resulting
FLOP reduction ratio is the largest with Frr = 92.7%, and it is
approximately 19.2% higher than that of the second best compet-
ing method. Similar results can be concluded from the CIFAR100
case.

The results for ResNet are summarized in the bottom panel of
Table 2. The performance of PPCA remains to be competitive but
no longer the best one. Such a result is expected. The key technique
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used by PPCA is kernel PPCA, which performs best for CNN models
with very ‘‘thick” layers (i.e., layers with a large number of kernels
and channels). Many classical CNNs are of this type (e.g., LeNet,
AlexNet, VGG, etc.). However, ResNet is somewhat different; its
network structure is already slimmed to some extent, in the sense
that not many kernels are contained in each layer. For this case,
both the NS and COP methods seem to be better choices. To sum-
marize, PPCA seems to work well for all cases and has a superior
performance for CNNs with a large number of kernels.



Table 2
Results for competing methods vs PPCA. Alg is the algorithm. Acc is the optimal predictive accuracy. DAcc is the accuracy change between the baseline model and the reduced
model. Prr is the parameter reduction ratio, and Frr is the FLOP reduction ratio. The values of the different measures for the competing methods are from their original papers.

Datasets Alg Acc DAcc (%) Prr (%) Frr (%)

VGG
CIFA10 NS 93.59 +0.03 73.9 29.2

SFP 92.99 �0.57 73.0 73.0
COP 93.31 �0.25 92.8 73.5
PPCA 92.61 �0.05 92.7 92.7

CIFA100 SFP 71.52 �1.07 42.3 42.2
COP 71.77 �0.82 73.2 43.1
PPCA 70.10 �0.77 57.5 57.7

ResNet
CIFA10 NS 90.23 �2.41 35.3 53.4

SFP 92.08 �0.56 39.2 41.0
COP 91.97 �0.67 57.5 53.9
PPCA 92.56 �0.40 47.8 48.1

CIFA100 SFP 67.83 �0.91 33.8 33.9
COP 68.29 �0.45 35.2 34.2
PPCA 67.38 �0.52 30.7 30.8
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To further verify this, we use VGG (e.g., a classical network with
‘‘thick” layers) and ResNet (e.g., a classical network with ‘‘thin” lay-
ers) as two representative network structures. They were first
trained on the CIFAR10 dataset. Next, we consider all the convolu-
tion layers before the output layer for the network under study.
Singular value decomposition was conducted for the kernel
weights for each layer. We then computed the total variability
explained by different top portions of eigenvalues (e.g., 20%, 40%,
60%, 80%, and 100%) for each layer. They were then averaged over
different layers. The detailed results are summarized in Fig. 6. We
find that for the VGG model, the total variability explained by the
different top portions of eigenvalues is always greater than that of
ResNet. This suggests that the convolutional layers used by the
VGG network should have a better chance than those in ResNet
for model compression. As a result, VGG (i.e., the network with
‘‘thick” layers) should be more suitable for the proposed PPCA
method than ResNet (i.e., the network with ‘‘thin” layers). This
might explain the superior performance of PPCA on ‘‘thick” type
networks.
5.5. Running time analysis

As we discussed before, the running time complexity could be
significantly reduced by the proposed PPCA method. To verify this,
we conduct some simulation studies. A number of classical net-
works (AlexNet, VGG, ResNet, and MobileNet) are trained on the
CIFAR10 dataset as examples. For each example, the best-
Fig. 6. Total variability explained by different top portion of eigenvalues. Blue line
is for VGG and yellow line is for ResNet. Both are trained on CIFAR10 dataset.
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performing PPCA model is selected and then compared with the
full model in terms of real running time. Specifically, for a given
target model (i.e., the PPCA model or the full model), a total of
10,000 pictures from the CIFAR10 dataset were evaluated and
recorded the running time. We then replicated the above proce-
dure for 100 times. In this way, the averaged real running time is
computed and reported in Fig. 7. We find that for all four networks,
the average running time for the PPCA model is smaller than that
for the benchmark model. In most cases, the reduction is very
significant.
6. Conclusions

In this paper, we present a PPCA method for CNN compression.
The proposed method can be easily applied to both convolutional
and fully connected layers. It starts with a prespecified layer and
then conducts a novel kernel-PCA operation for subsequent layers.
The entire process progressively moves on to the final output layer
and could be iterated multiple times. The proposed method leads
to a significant reduction in terms of parameters and inference
costs. Meanwhile, the prediction power remains competitive.
Extensive numerical studies are presented to demonstrate the
empirical performance of the proposed method.

To conclude this article, we present here a number of interest-
ing topics for future study. First, PPCA compresses a CNN structure
by reducing the number of kernels. It does not change the size of
the kernel for each layer. We suspect that the kernel size can also
be learned automatically. Second, most important CNNs are rather
complicated, with a very large number of parameters. This makes
Fig. 7. Average running time on 10,000 pictures. Blue bar is for VGG and yellow bar
is for ResNet. Both are trained on CIFAR10 dataset.
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its numerical optimization very difficult (or at least time consum-
ing). The development of a novel algorithm to speed-up the opti-
mization would be another important topic for future study.
Third, many state-of-the-art methods have been created in the
field of tensor decomposition. Future studies should investigate
ways to combine these methods together to further improve the
empirical performance. Fourth, the proposed PPCA method only
takes the weight matrix (e.g., W) into consideration, whereas the
layer response x in the linear combination Wxþ b was not effec-
tively used. This makes our method less sensitive to the data. This
should be an interesting direction for future research. Lastly, the
proposed PPCA method involves a large number of tuning param-
eters, and their optimal combination needs to be learned for differ-
ent CNNs and datasets. This is another very time-consuming task.
From a design-of-experiment (DOE) perspective, this is a computer
experiment with many factors. It would thus be of great interest to
design an optimization experiment so that the best tuning param-
eter combination can be detected with as few experiments as
possible.
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