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In most cases, the asymptotic covariance matrix of an M-estimator is in a sandwich form. 
This sandwich form involves calculations of the first and second order derivatives of the 
loss function, which is intractable if the loss function is complex. To alleviate this problem, 
we propose in this article a novel method called Gaussian random perturbation. This 
method can be used to estimate the asymptotic covariance matrix of a general M-estimator 
without derivative calculations. The idea can be summarized as follows. We first generate a 
small random perturbation around the M-estimator. Then, we re-evaluate the loss function 
at the randomly perturbed M-estimator and obtain the estimators of the first and second 
order derivatives of the loss function via Taylor series expansion. This leads to a novel 
estimator for the asymptotic covariance matrix. We then rigorously show that the resulting 
covariance estimator is statistically consistent with two elegant characteristics. First, it 
involves no computation of derivatives. This makes it easier to estimate the covariance 
matrix of an M-estimator with a complex loss function. Second, it is convenient for parallel 
computing and thus attractive for massive data analysis. The consistency of the proposed 
asymptotic covariance estimator is demonstrated under appropriate regularity conditions. 
The practical usefulness of the method is further demonstrated with both simulation 
studies and real data analysis.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

M-estimators refer to a large class of estimators that are obtained by minimizing (or maximizing) an appropriately 
defined loss function (Lehmann and Casella, 1983). There are many estimates that fall into this category. Consider for 
example, a loss function of a traditional linear regression model is the summation of the squares of the residuals (Casella et 
al., 2015). The resulting ordinary least squares estimator is an M-estimator. In addition to that, the generalized least squares 
estimator is also an M-estimator. In fact, the M-estimator is also known as the generalization of a maximum likelihood 
estimator. Thereafter, all the maximum likelihood estimators are M-estimators. Finally, if the parameters are identified 
by a set of moment conditions, the popularly used generalized method of moment can be equivalently formulated as a 
minimization problem. Consequently, it is also an M-estimator (Wooldridge, 2001).
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In most cases, carefully defined M-estimators are consistent and asymptotically normal under appropriate conditions. 
The asymptotic covariance matrix of an M-estimator is usually in the form of a sandwich (Shao, 2003). In some cases 
(e.g., the maximum likelihood estimator), the sandwich form can be further simplified into a non-sandwich form. For an 
asymptotically valid statistical inference (e.g., hypothesis testing and confidence interval), the sandwich-type asymptotic 
covariance matrix needs to be estimated. One way to solve this problem is to obtain its analytical formula, and then replace 
the unknown parameters with appropriate estimates. This method is effective if the formula of the asymptotic covariance 
matrix is analytically simple. For example, in most cases, there are simple analytical solutions for various least squares 
estimates and maximum likelihood estimates.

However, the asymptotic covariance matrix involves the calculation of the first and second order derivatives of the loss 
function, which is tedious if the loss function is complex. A typical example is a regression model with missing data. In this 
case, the full likelihood function involves some unknown nuisance parameters. Particularly, these nuisance parameters are 
usually related to the missing mechanism and need to be integrated out (Shao and Wang, 2002; Wang and Dai, 2008; Lin 
et al., 2021; Zhou et al., 2022). Consequently, the resulting asymptotic covariance matrix involves the first and second order 
derivatives of an objective function with complicated integration and is thus difficult to calculate and estimate (Chen et 
al., 2015; Zhao and Shao, 2015). Estimating the asymptotic covariance matrix without knowing its analytical formula then 
becomes a problem of great importance. To alleviate this problem, re-sampling type methods such as bootstrapping and 
jackknifing have been proposed and are popularly used (Efron and Stein, 1981; Efron and Gong, 1983; Efron and Tibshirani, 
1986; Efron, 1994; Jiao and Han, 2020). They estimate the asymptotic covariance matrix consistently without knowing its 
analytical formula. This avoids evaluating the derivatives of some complex integral functions. However, such re-sampling 
methods also suffer from computational complexity. This might not be a problem for traditional data analysis, when the 
sample size is not very large and the data dimensions are relatively low. However, this could be a serious burden for 
massive datasets. In the latter case, computing the M-estimator itself is already computationally expensive, and any further 
replication is practically infeasible.

To solve the problem detailed above, we propose a novel method called Gaussian random perturbation. The key idea 
is summarized as follows. First, for a given loss function and its M-estimator, we generate a small random perturbation 
around the M-estimator. The random perturbation is generated from a multivariate normal distribution with tiny variability. 
Accordingly, the randomly perturbed M-estimator still stays very close to the original M-estimator locally. Second, we re-
evaluate the loss function on those locally and randomly perturbed M-estimators. Through rigorous mathematic derivation 
with Taylor series expansion, we find that the first and second order derivatives of the loss function evaluated at the 
M-estimator can be further approximated by two components. They are, respectively, the loss function evaluated at the M-
estimator and the re-evaluated loss function at the randomly perturbed M-estimator. This suggests that the elements in the 
sandwich-type asymptotic covariance matrix can be approximately estimated by using loss functions, instead of computing 
the derivatives. This leads to a novel estimator for the asymptotic covariance matrix. We then rigorously demonstrate that 
the resulting covariance estimator is statistically consistent.

It is remarkable that the above proposed covariance estimator enjoys two important features. First, it involves no com-
putation of the first and second order derivatives for the loss function at the M-estimator. Thus, the asymptotic covariance 
matrix can be consistently estimated automatically without knowing the analytical formula of an M-estimator. Second, the 
proposed covariance estimator can be expressed in a vector form. A vector can be naturally decomposed into different el-
ements. Those elements can then be separately processed by different computers simultaneously. That makes vector forms 
more convenient for parallel computing. By using a parallel strategy, we can break a large-scale computation problem into 
many small pieces and then solve them in a parallel way (Battey et al., 2018; Jordan et al., 2018; Fan et al., 2019; Li et 
al., 2020). This makes the method particularly attractive for massive data analysis when the computation complexity and 
privacy protection are of great importance.

The remainder of this article is organized as follows. Section 2 introduces the proposed Gaussian random perturbation 
method. We then illustrate the idea using two types of M-estimators: a traditional M-estimator and an M-estimator with 
nuisance parameters. We then rigorously show that both estimators are statistically consistent for the two cases. Simulation 
studies and an empirical example are presented in Section 3, and Section 4 concludes the article with a discussion. All 
theoretical proofs are relegated to the Appendices.

2. Methodology

To illustrate the usefulness of the proposed Gaussian random perturbation method, we consider the asymptotic covari-
ance for two types of M-estimators. The first is the traditional M-estimator, described in subsection 2.1. The second is an 
M-estimator with unknown nuisance parameters, which we will address in subsection 2.2.

2.1. Asymptotic covariance for M-estimator

Let Xi = (Xi1, · · · , Xip)� ∈Rp be an independent and identically distributed observation collected from the i-th (1 ≤ i ≤
N) subject. Our main focus is to make an inference for θ based on the observed data Xi for 1 ≤ i ≤ N , where θ ∈ � ⊂Rp is 
the unknown parameter with p < ∞. Here, � is the parameter space, and it is an open set in Rp . The corresponding loss 
function is defined as �(Xi, θ). Then, an M-estimator is proposed as θ̂ = argminθ∈�L(θ), where L(θ) = N−1 ∑N

i=1 �(Xi, θ). 
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Accordingly, we should have L̇(θ̂ ) = 0, where L̇(θ) stands for the first order derivative of L(θ) with respect to θ . Let θ0 be 
the true value, �̇(Xi, θ0) and �̈(Xi, θ0) be the first and second order derivatives of �(Xi, θ0), respectively. Under appropriate 
regularity conditions, we should have

θ̂ − θ0 =
{

N−1
N∑

i=1

�̈(Xi, θ0)
}−1{

N−1
N∑

i=1

�̇(Xi, θ0)
}
{1 + op(1)},

and 
√

N(θ̂ − θ0) →d N(0, �−1
2 �1�

−1
2 ). Here, the two unknown matrices are given by �1 = E

[
�̇(Xi, θ0)�̇

�(Xi, θ0)
]

and 

�2 = E
[
�̈(Xi, θ0)

]
. It should be noted that when θ̂ is the maximum likelihood estimator obtained under a correctly spec-

ified likelihood function, we should have �1 = �2 = � for some positive definite matrix �. Accordingly, the asymptotic 
covariance of 

√
N(θ̂ − θ0) becomes �−1. As one can see, the key problem here is estimating �1 and �2.

We next consider how to estimate both �1 and �2 without knowing their analytical formulas. Specifically, for a given 
loss function �(Xi, θ) evaluated at the associated M-estimator θ̂ , we generate a small random perturbation δ(k) around θ̂ . 
The random perturbation δ(k) is generated from a multivariate normal distribution with mean 0 and covariance σ 2 I p ∈Rp×p

for k = 1, · · · , K , where K is a pre-specified replication number. Here I p stands for a p × p identity matrix. The variance σ 2

is a carefully selected small positive number. The value of σ should be selected as small as possible so that the randomly 
perturbed loss function �(Xi, θ̂ + δ(k)) stays closely to the original one, that is, �(Xi, θ̂ ).

We start with �1 first. A natural estimator for �1 is N−1 ∑N
i=1

{
�̇( Xi, θ̂ )�̇�(Xi, θ̂ )

}
. Through Taylor series expansion, one 

can verify that

�(Xi, θ̂ + δ(k)) ≈ �(Xi, θ̂ ) + δ(k)��̇(Xi, θ̂ ). (2.1)

The approximation holds because δ(k) is selected to be sufficiently small. Multiplying δ(k) on both sides of (2.1), we ob-
tain δ(k)

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

} ≈ δ(k)δ(k)��̇(Xi, θ̂ ). Using the fact that E(δ(k)δ(k)�) = σ 2 I p , we replace δ(k)δ(k)� with its 
expected form σ 2 I p and expect that �̇(Xi, θ̂ ) can be estimated by σ−2

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}
δ(k) with little bias. This 

motivates us to construct an initial estimator of �1 as �̂(k)
1,int = (2σ−4 N)−1 ∑N

i=1

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}2
(δ(k)δ(k)�). We 

then have

�̂
(k)
1,int = (2σ−4N)−1

N∑
i=1

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}2
(δ(k)δ(k)�)

≈ (2σ−4N)−1
N∑

i=1

{
δ(k)��̇(Xi, θ̂ )�̇�(Xi, θ̂ )δ(k)

}
(δ(k)δ(k)�).

Unfortunately, the above initial estimator is biased. Its asymptotic bias is given by the following Proposition 1.

Proposition 1. Define �̂
(0k)
1,int = (2σ−4N)−1 ∑N

i=1

{
δ(k)��̇(Xi, θ0)�̇

�(Xi, θ0)δ
(k)

}
(δ(k)δ(k)�), then we have E{�̂(0k)

1,int} = �1 +
2−1tr(�1)I p .

Based on the above proposition, one can immediately have,

E
(
�̂

(k)
1,int

) ≈ E
{
�̂

(0k)
1,int

} = �1 + 2−1tr(�1)I p, (2.2)

which involves a non-negligible bias term 2−1tr(�1)I p . Therefore, bias-correction is necessary. From (2.2), we know that 
E
{
tr(�̂(k)

1,int)
} ≈ 2−1(p + 2)tr(�1). Accordingly, tr(�1) can be approximated by 2(p + 2)−1tr(�̂(k)

1,int). By plugging this expres-
sion into (2.2), we obtain the following bias-corrected estimator,

�̂
(k)
1 = �̂

(k)
1,int − (p + 2)−1tr(�̂(k)

1,int)I p .

The bias-corrected estimator �̂(k)
1 is nearly unbiased. However, its variability is still large. To reduce the variability, we then 

average over different replications of �̂(k)
1 and obtain the final estimator of �1 as

�̂1 = K −1
K∑

k=1

�̂
(k)
1 . (2.3)

This leads to a consistent estimator of �1. See Theorem 1 proposed at the end of this subsection for rigorous theoretical 
justification.
3
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We next consider how to estimate �2. A natural estimator of �2 is N−1 ∑N
i=1

{
�̈(Xi, θ̂ )

}
. Similar to �1, we employ the 

Taylor series expansion and obtain that

�(Xi, θ̂ + δ(k)) ≈ �(Xi, θ̂ ) + δ(k)��̇(Xi, θ̂ ) + δ(k)��̈(Xi, θ̂ )δ(k)/2. (2.4)

Multiplying δ(k)δ(k)� on both sides of (2.4), we obtain δ(k)
{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}
δ(k)� ≈ δ(k)δ(k)�{

δ(k)��̇(Xi, θ̂ )
} +

δ(k)δ(k)��̈(Xi, θ̂ )δ(k)δ(k)�/2. Note that E{�̇(Xi, θ0)} = 0 by Condition (C2) below and E(δ(k)δ(k)�) = σ 2 I p . We expect that 
�̈(Xi, θ̂ ) can be estimated by 2σ−4δ(k)

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}
δ(k)� . This motivates us to construct an initial estimator of 

�2 as �̂(k)
2,int = (σ 4N)−1 ∑N

i=1

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}
(δ(k)δ(k)�). Through Taylor series expansion, we then have,

�̂
(k)
2,int = (σ 4N)−1

N∑
i=1

{
�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ )

}
(δ(k)δ(k)�)

≈ (σ 4N)−1
N∑

i=1

{
�̇�(Xi, θ̂ )δ(k)

}
(δ(k)δ(k)�) + 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)��̈(Xi, θ̂ )δ(k)

}
(δ(k)δ(k)�)

= Q 1 + Q 2.

One can easily verify that Q 1 = 0 because 
∑N

i=1 �̇(Xi, θ̂ ) = 0 by the definition of θ̂ . Then, �̂(k)
2,int ≈ Q 2. Similar to the discus-

sion of �1, Q 2 is biased, and its asymptotic bias is given by Proposition 2.

Proposition 2. Define �̂(0k)
2,int = (2σ 4N)−1 ∑N

i=1

{
δ(k)��̈(Xi, θ0)δ

(k)
}
(δ(k)δ(k)�), then we have E{�̂(0k)

2,int} = �2 + 2−1tr(�2)I p .

Based on the results of Proposition 2, we have

E(Q 2) = E(�̂
(k)
2,int) ≈ E(�̂

(0k)
2,int) = �2 + 2−1tr(�2)I p . (2.5)

Similarly, to correct the bias term 2−1tr(�2)I p , we define the bias-corrected estimator as, �̂(k)
2 =�̂

(k)
2,int−(p +2)−1tr(�̂(k)

2,int)I p . 
By averaging over all replications of k = 1, · · · , K , we then obtain the final estimator of �2 as

�̂2 = K −1
K∑

k=1

�̂
(k)
2 . (2.6)

We can theoretically and rigorously show that �̂2 is an asymptotically unbiased and consistent estimator for �2 under 
appropriate regularity conditions. Similar to that of �̂1, the computation of �̂2 does not need to know its analytical formula, 
nor does it require the calculation of derivatives. Before providing the theoretical results of �̂1 and �̂2, we first consider 
the following regularity conditions.

(C1) Assume �(Xi, θ) has at least r-th order continuous derivatives for some r ≥ 3. In addition, �̈(Xi, θ) and 
...
�(Xi, θ) are 

bounded uniformly for θ within a small neighborhood of θ0. Further assume θ0 ∈ � and � is an open set in Rp .
(C2) Assume E

{
�̇(Xi, θ0)

} = 0. In addition, both �1 and �2 are positive definite matrices with bounded eigenvalues for any 
N .

Both Conditions (C1) and (C2) are standard, and similar conditions are popularly used in the literature (e.g., Shao (2003)). 
Based on the two conditions, the theoretical results of �̂1 and �̂2 are given in Theorem 1.

Theorem 1. Under conditions (C1)–(C2), we have �̂1 →p �1 and �̂2 →p �2 as min{N, K } → ∞ by setting σ → 0.

The above theorem implies that �̂1 and �̂2 are both consistent by setting σ to be sufficiently small as min{N, K } → ∞. 
Our simulation results show that σ = N−1 works satisfactorily.

Remark. It should be noted that the formulas of �̂(k)
1,int and �̂(k)

2,int can be expressed in vector forms. For example, �̂(k)
1,int can 

be re-written as (2σ−4 N)−1W �W δ(k)δ(k)� , where W = (W1, · · · , W N)� and W i = �(Xi, θ̂ + δ(k)) − �(Xi, θ̂ ) for i = 1, · · · , N . 
This vector form is very convenient for parallel computing (e.g., Vegh (2018); Maslian et al. (2019)). This is because a 
vector can be naturally decomposed into different elements. Those elements can then be separately processed by different 
computers simultaneously. That makes vector forms convenient for parallel computing.
4
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2.2. Asymptotic variance for M-estimator with nuisance parameters

We next consider an M-estimator with nuisance parameters. The corresponding loss function is defined as �(Xi , θ, γ ) ∈
R, where θ ⊂ � ∈ Rp (p < ∞) is the target parameter of interest and γ ⊂ 	 ∈ Rq (q < ∞) is the nuisance parameter 
with a consistent estimator of γ̂ . A typical example is the linear regression model with heteroscedastic error variances 
(Greene, 1997; Wooldridge, 2015). In this case, the parameters related to the variances are nuisance parameters. Another 
example is regression models with missing data in which the propensity function is assumed to be in a parametric form; 
see, for example, Huang et al. (2005) and Ibrahim and Molenberghs (2009). In this case, the parameters related to the 
propensity function are the nuisance parameters. Based on the preliminary estimator γ̂ , a two-step M-estimator is proposed 
as θ̂ = argminθ∈�L(θ, γ̂ ) with L(θ, γ̂ ) = N−1 ∑

i �(Xi, θ, γ̂ ). Let θ0 and γ0 be the true parameters. Then, under Conditions 
(C3) and (C4) below, we have

θ̂ − θ0 =
{

N−1
N∑

i=1

∂2�(Xi, θ0, γ̂ )

∂θ∂θ�
}−1{

N−1
N∑

i=1

∂�(Xi, θ0, γ̂ )

∂θ

}
{1 + op(1)}

=
{

N−1
N∑

i=1

∂�2(Xi, θ0, γ0)

∂θ∂θ�
}−1{

N−1
N∑

i=1

∂�(Xi, θ0, γ0)

∂θ

}
{1 + op(1)}. (2.7)

Accordingly, one can obtain 
√

N(θ̂ − θ0) →d N(0, �̄−1
2 �̄1�̄

−1
2 ) with

�̄1 = E
[∂�(Xi, θ0, γ0)

∂θ

{∂�(Xi, θ0, γ0)

∂θ

}�]
and �̄2 = E

{∂2�(Xi, θ0, γ0)

∂θ∂θ�
}
.

Similar to the discussions in subsection 2.1, �̄1 and �̄2 can be estimated by �̂n1 =K −1 ∑K
k=1

{
�̂

(k)
n1,int−(p +2)−1tr(�̂(k)

n1,int)I p

}

with �̂
(k)
n1,int = (2σ 4N)−1 ∑N

i=1

{
�(Xi, θ̂ + δ(k), γ̂ ) − �(Xi, θ̂ , γ̂ )

}2
(δ(k)δ(k)�), and �̂n2 = K −1 ∑K

k=1

{
�̂

(k)
n2,int − (p + 2)−1 ×

tr(�̂(k)
n2,int)I p

}
with �̂(k)

n2,int = (σ 4N)−1 ∑N
i=1

{
�(Xi, θ̂ + δ(k), γ̂ ) − �(Xi, θ̂ , γ̂ )

}
(δ(k)δ(k)�). Here δ(k)s are the random pertur-

bations that are defined in subsection 2.1. Before providing the theoretical results of �̄1 and �̄2, we first consider the 
following regularity conditions.

(C3) Assume �(Xi, θ, γ ) has at least r-th order continuous derivatives with-respect to θ for some r ≥ 3. In addition, 
�̈(Xi, θ, γ ) and 

...
�(Xi, θ, γ ) are bounded uniformly for θ within a small neighborhood of θ0, and γ within a small 

neighborhood of γ0. Further assume that θ0 ∈ � and � is an open set in Rp .
(C4) Assume that E

{
�̇(Xi, θ0, γ0)

} = 0 and E
{
∂2�(Xi, θ0, γ0)/∂θ∂γ

} = 0. Additionally, both �̄1 and �̄2 are positive definite 
matrices with bounded eigenvalues for any N .

Theorem 2 shows that both �̂n1 and �̂n2 are consistent estimators of �̄1 and �̄2, respectively, by setting σ to be sufficiently 
small as min{N, K } → ∞.

Theorem 2. Under conditions (C3)–(C4), we have �̂n1 →p �̄1 and �̂n2 →p �̄2 as min{N, K } → ∞ by setting σ → 0.

3. Numerical studies

To assess the finite sample performance of the proposed method, we conduct several simulation studies with four dif-
ferent settings. In the first setting, we consider a standard logistic regression model, where the estimators are traditional 
M-estimators. Second, we consider a linear regression model with heteroscedastic error variances, where the variances in-
volve nuisance parameters. The third setting is similar to the second one, except that the variance of the error term is 
involved with both the target and nuisance parameters. Finally, to investigate a more complex loss function, we consider 
a multiplicative model in the last setting. It should be noted that, to evaluate the effectiveness of the proposed Gaussian 
random perturbation method, all the considered simulation examples have explicit asymptotic covariance.

3.1. Simulation models

Setting 1 (Traditional M-estimator). A standard logistic regression model is used to generate the data. It is given by,

P (Yi = 1|Xi, θ) = exp(X�
i θ)

1 + exp(X�
i θ)

,

where Xi = (Xi1, Xi2, Xi3)
� ∈ R3 is a three-dimensional multivariate normal random variable with 0 mean and unit vari-

ance. The regression coefficient is given by θ = (0.2, 1.0, 2.5)� .
5
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Setting 2 (Asymptotic covariance with nuisance parameters). In this example, we generate the data following a linear regression 
model with heteroscedastic error variances. It is given by,

Yi = X�
i θ + εi,

where Xi = (Xi1, Xi2, Xi3)
� ∈ R3 is a three-dimensional multivariate normal random variable with 0 mean and unit vari-

ance. The regression coefficient is given by θ = (0.3, 1.5, 3)� . The error term εi is a random variable generated from a 
normal distribution with 0 mean and covariance �ε = diag{exp(Z�

i γ )}, where the sign “diag” indicates a diagonal matrix. 
Here, Zi = (Zi1, Zi2)

� ∈R2 is a two-dimensional multivariate normal random variable with 0 mean and unit variance, and 
the nuisance parameter γ is set to be γ = (0.5, 

√
2)� .

Setting 3 (Asymptotic covariance with both target and nuisance parameters). In this case, the simulation setup is the same as 
that of Setting 2 except for the generation mechanism of error term εi . In this example, error term εi is generated from 
a normal distribution with 0 mean and covariance �ε = diag{exp(X�

i θ + Z�
i γ )}. Accordingly, the asymptotic covariance 

matrix of θ̂ involves both target parameter θ and nuisance parameter γ . To make the coefficient values more diverse, we 
investigate another set of θ as θ = (0.1, 0.5, 1)� .

Setting 4 (Multiplicative model). In the last case, we generate the data according to the following multiplicative model,

Yi = exp(X�
i θ)εi,

where Xi = (Xi1, Xi2, Xi3)
� ∈ R3 is a three-dimensional multivariate normal random variable with zero mean and unit 

variance. The error term εi is specified as log(εi), and it follows a normal distribution within 0 mean unit variance. The 
regression coefficient is given by θ = (0.1, 0.5, 1)� .

3.2. Performance measurements

For a reliable evaluation, a total of M = 1, 000 simulation iterations are conducted for all the simulation studies. The 
sample sizes are set as N = (5, 10, 20) × 103, and the true asymptotic covariance matrix with respect to 

√
N(θ̂ − θ0) is 

defined as � = �−1
2 �1�

−1
2 ∈ R3×3. It should be noted that the matrices �1, �2 and � are usually unknown in practice. 

To obtain their true values, we adopt a simulation-based method. Specifically, �1 is simulated by averaging 50,000 replica-
tions of �̇(Xi, θ)�̇�(Xi, θ), and �2 is simulated by averaging 50,000 replications of �̈(Xi, θ). Thereafter, � can be obtained 
by calculating a sandwich form of �1 and �2. It is remarkable that the loss functions in Settings 1-3 are standard and 
popularly used. As such, we omit their derivative forms in the main manuscript to save space. However, the loss function in 
Setting 4 is a little unusual and complicated. Following Chen et al. (2010), we provide a least squares relative errors (LSRE) 
criterion. Thus, loss function L(θ) is defined as L(θ) = 1

2

∑N
i=1

[{ Yi−exp(X�
i θ)

Yi

}2 + { Yi−exp(X�
i θ)

exp(X�
i β)

}2
]

, in which the parameters 
are involved in both the denominator and numerator of the second part of L(θ). Accordingly, the first and second order 
derivatives of this loss function are complicated, so that we present them in the appendix.

Let �̂ be the estimated covariance matrix of �. To assess the effectiveness of the proposed method, we provide here a 
comparative study. Specifically, in addition to the proposed Gaussian random perturbation (GRP) method, other estimation 
strategies for � are considered. They are, respectively, the bootstrap (BP) method and non-bootstrap (Non-BP) method for all 
the four settings. For the bootstrap method, we consider R = 200 bootstrap iterations. For each bootstrap iteration, we ran-
domly select N samples with replacement as the bootstrap samples, and then evaluate the estimators θ̃ (r) = (θ̃

(r)
1 , θ̃ (r)

2 , θ̃ (r)
3 )

for 1 ≤ r ≤ R . We then compute the sample covariance matrix of θ̃ (1), · · · , θ̃ (R) , leading to the bootstrap covariance estimate 
�̂BP. For the non-bootstrap method, the analytical forms of the covariance matrix for the four settings are obtained using 
different estimation methods. Particularly, the analytical form of �̂ in Setting 1 is obtained using the maximum likelihood 
estimation, which is given by �̂Non-BP = {∑N

i=1 exp(X�
i θ̂ )X�

i Xi/(1 + exp(X�
i θ̂ ))2

}−1
. The analytical forms of �̂ in Settings 

2 and 3 are obtained using the weighed least squares estimation, which are given by �̂Non-BP = {∑N
i=1 X�

i Xi/ exp(Z�
i γ̂ )

}−1

and �̂Non-BP = {∑N
i=1 X�

i Xi/ exp(X�
i θ̂ + Z�

i γ̂ )
}−1

, respectively. Finally, the analytical form of �̂ in Setting 4 is obtained 
using the traditional sandwich-typed estimation, which is given in the appendix.

We next employ the following two measures to gauge the performance of the proposed method. First, for each simulation 
iteration, let �̂(m)

GRP be the estimated asymptotic covariance matrix obtained in the m-th replication using the proposed 
Gaussian random perturbation (GRP) method. To measure the estimation efficiency, we calculate the root mean square error 
for �̂GRP as RMSE

�̂GRP
= M−1{||�̂(m)

GRP�
−1 − I3||2}1/2, where I3 ∈ R3×3 is an identity matrix and || · ||2 is the L2 norm. 

Similarly, we obtain the RMSE values for �̂Non-BP and �̂BP. Second, let θ̂ (m) = (θ̂
(m)

k )� = (θ̂
(m)
1 , θ̂ (m)

2 , θ̂ (m)
3 )� be the estimates 

obtained in the m-th replication using the proposed GRP method. Then, for a given parameter θk with 1 ≤ k ≤ 3, a 95% 
confidence interval is constructed as CI(m)

k = (θ̂
(m)

k − z0.975ŜE
(m)

k , θ̂ (m)

k + z0.975ŜE
(m)

k ), where ŜE
m
k is the kth diagonal element of 

(�̂m /N)1/2 and zα is the α-th quantile of a standard normal distribution. Consequently, the empirical coverage probability 
GRP

6
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Table 1
Simulation results of RMSE values using different kinds of covariance estimators. Specifically, 
�̂GRP stands for using the proposed GRP method, �̂Non-BP stands for using non-bootstrap meth-
ods, �̂BP stands for using BP method.

Simulation N �̂GRP �̂Non-BP �̂BP

Setting 1

5000 0.216 0.094 0.294
10000 0.207 0.076 0.282
20000 0.196 0.060 0.268

Setting 2

5000 0.267 0.171 0.328
10000 0.217 0.127 0.296
20000 0.178 0.090 0.262

Setting 3

5000 0.620 0.344 0.476
10000 0.501 0.258 0.407
20000 0.425 0.190 0.351

Setting 4

5000 1.018 0.992 0.812
10000 0.945 0.921 0.783
20000 0.847 0.823 0.758

Table 2
Simulation results of CP (in %) for (θ̂1, ̂θ2, ̂θ3)� . The values given outside the parentheses are computed using the 
proposed GRP method. The values given in the first column inside the parentheses are computed using Non-BP 
method. The values given in the second column inside the parentheses are computed using BP method.

Simulation N θ̂1 θ̂2 θ̂3

Setting 1

5000 94.5(94.6,95.1) 95.2(95.2,95.1) 95.2(95.4,95.1)
10000 95.2(96.1,95.1) 96.1(95.1,95.1) 94.3(96.1,95.1)
20000 94.5(94.8,94.8) 94.4(96.2,94.8) 95.4(95.2,94.8)

Setting 2

5000 94.7(94.7,94.5) 95.6(95.9,94.5) 94.0(94.0,94.5)
10000 94.9(95.4,94.6) 94.4(94.2,94.6) 94.4(94.5,94.6)
20000 94.6(94.0,94.8) 94.9(94.7,94.8) 96.3(96.3,94.8)

Setting 3

5000 96.1(96.3,95.7) 96.2(95.2,94.3) 94.6(94.9,94.2)
10000 95.5(94.8,94.0) 96.2(95.6,94.7) 95.6(95.2,94.3)
20000 96.1(95.6,95.2) 95.2(94.5,94.2) 95.5(95.1,94.5)

Setting 4

500 94.1(94.4,93.2) 93.3(94.1,93.2) 92.6(93.1,92.2)
10000 93.4(94.0,92.8) 93.3(93.5,93.0) 92.4(93.4,91.8)
20000 95.5(95.5,94.0) 96.0(94.4,93.2) 94.5(94.4,93.9)

(CP) is computed as CPk = M−1 ∑M
m=1 I(θk ∈ CI(m)

k ), where I(·) is the indicator function. Similarly, we obtain the CP values 
for �̂Non-BP and �̂BP.

Remark. Since our proposed method does not need to calculate the derivative of the objective function, it is more suitable 
to those settings that the derivative calculations are complex or not computable. However, in order to compare with the 
traditional MLE, the simulation settings considered in this article all have differentiable objective function and the deriva-
tives are computable. We did not consider the cases with more complex objective functions, which limits the simulation 
studies.

3.3. Simulation results

The detailed simulation results are summarized in Tables 1–2, from which we can draw a number of conclusions. First, 
the proposed asymptotic covariance matrix estimator (i.e., �̂GRP) is consistent with its mean root square error values de-
creasing towards 0 as N → ∞. Particularly, we can see that in the cases of Settings 1-3, when the form of asymptotic 
variance is simple, the RMSE values of the proposed method are slightly worse to the Non-BP method. However, when the 
asymptotic variance becomes complicated, such as Setting 4, our method is comparable with the Non-BP method. Second, in 
all of the four settings, the reported coverage probabilities (i.e., CPs) obtained by GRP, BP and Non-BP are nearly the same. 
Moreover, the coverage probability values are fairly close to their nominal 95% level, which suggests that the estimated 
standard errors (i.e., ŜE) are well approximated. In summary, all of the results indicate that the proposed Gaussian random 
perturbation estimation for �̂ is unbiased and consistent.
7
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Table 3
Estimation results for the real data example.

Variable Coefficient ŜE1 ŜE2 P1 P2

Intercept −5.090 0.078 0.090 <0.001 <0.001
Tenure −0.316 0.068 0.059 <0.001 <0.001
Expense −0.279 0.060 0.060 <0.001 <0.001
Degree −0.873 0.141 0.193 <0.001 <0.001
Tightness −0.287 0.046 0.052 <0.001 <0.001
Entropy −0.328 0.083 0.095 <0.001 <0.001

3.4. A real data example

To illustrate the practical usefulness of our method, we present a real data example for analyzing customer churn. 
This study aims to understand what factors affect customer churn in the mobile communication industry. The data are 
drawn from a mobile communication company in China that contains a total of N = 44, 571 customers with their call-
record information. For each customer i, we define a binary response variable, where Yi = 1 if customer i stops using the 
service, otherwise Yi = 0. The corresponding churn rate is 1.17%. The literature suggests that other than traditional factors 
(e.g., tenure, expense, etc.), social factors can have an important influence on customer churn (Nitzan and Libai, 2011). To 
investigate the possible factors affecting customer churn, we consider five covariates, which are called tenure, expense, degree, 
tightness, and entropy. Specifically, tenure is defined as the length of time the customer uses the service. Expense is defined 
as the average cost to a customer of using a mobile phone over a period of time.

To proceed with the explanation for the next three variables, we need to define an auxiliary variable called the ad-
jacency matrix. Particularly, we assume that the network structure of N customers is captured by the adjacency matrix 
A = (aij) ∈ RN×N , where aij = 1 if node i calls (or is called by) node j (i �= j), and aij = 0 otherwise. We then define 
aii = 0 and 

∑N
i=1 aij > 0 for completeness. Then, degree is defined as Di = ∑

j �=i ai j , indicating the number of contacts 
involved with a focal customer in one’s own network. Tightness is defined as Ti = T imei/Di , where T imei is the total com-
munication time between customer i and their connected members. Entropy is defined as Ei = − 

∑
aij=1 pij log(pij), where 

pij = Commui, j/T imei and Commui, j is the total communication time between j and i. Typically, a large entropy indicates 
a more dispersed average communication time.

To investigate the influence of the proposed factors on the customer churn rate, we conduct a standard logistic regression. 
All the variables have been standardized so that the mean is 0 and variance is 1. Table 3 reports the coefficients estimated 
via maximum likelihood estimation, the standard errors (i.e., ŜE1, ŜE2), and corresponding p-values (i.e., P1, P2) estimated 
using both the traditional method and our proposed method. From the table, we can see that the standard errors estimated 
by the proposed random perturbation method are very similar to those obtained using the traditional method. This indicates 
that our method is robust in practice with real data. Furthermore, we find that all the proposed factors are significant at 
the 0.1% level, which means that they all have a significant effect in explaining customer churn behavior.

4. Discussion

We propose here a Gaussian random perturbation method for estimating the asymptotic covariance matrix of general 
M-estimators. The key idea is to generate a small random perturbation around the local M-estimator. By re-evaluating the 
loss function at the randomly perturbed M-estimator, we obtain the estimator of the first and second order derivatives of 
the loss function via Taylor series expansion. This leads to a novel estimator for the asymptotic covariance matrix. We then 
rigorously show that the resulting covariance estimator is statistically consistent under appropriate regularity conditions. The 
method does not require the computation of the derivatives of the loss function, and it is convenient for parallel computing. 
The practical usefulness of the method is further demonstrated via both simulation and real data analysis.

To generalize the usefulness of the proposed Gaussian random perturbation method, we provide here two possible future 
research directions. First, it is of great importance to generalize the proposed method to accommodate loss functions with 
discontinuous first order derivatives, such as the quantile regression. Second, our method can be extended to nonparamet-
ric regression models. We believe these efforts may increase the value of the concept of Gaussian random perturbation 
considerably.
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Appendix

This Appendix includes four parts: Appendix A presents a useful lemma, which provides proof for Theorems 1–2. Ap-
pendix B demonstrates Theorem 1, and Appendix C demonstrates Theorem 2. Appendix D gives the analytical form of the 
sandwich- type covariance matrix of the model in Setting 4 in the simulation.

Appendix A. A useful lemma

Lemma 1. Let A ∈Rp×p with p < ∞ be an arbitrary symmetric matrix of bounded eigenvalues, δ = (δ1, · · · , δp)� ∈Rp , which is a 
random vector generated from a multivariate normal distribution with mean 0 and covariance matrix σ 2 I p ∈ Rp×p . Then we have, 
(i). E

{
(δ� Aδ)δδ�} = 2σ 4 A + σ 4tr(A)I p ; (ii). for any j1, j2 = 1, · · · , p, we have var

{
(δ� Aδ)δ j1δ j2

}
< ∞; (iii). for any j1, j2 =

1, · · · , p, we have E
{
(δ� Aδ)2δ j1δ j2

}
< ∞; and (iv). for any j1, j2 = 1, · · · , p, we have var

{
(δ� Aδ)2δ j1δ j2

}
< ∞.

Proof. We first prove (i). Define Z = δ/σ , then Z ∼ N(0, I p), and we have

σ−4 E
{
(δ� Aδ)δδ�}

= E
{
(Z� A Z)Z Z�}

. (A.1)

Write A = U�DU for some orthogonal matrix U (U U� = U�U = I p ) and diagonal matrix D = diag{d j} ∈ Rp×p . Define 
Z̃ = U Z = ( Z̃1, · · · , ̃Z p)� ∈Rp , then we have Z̃ ∼ N(0, I p). The equation (A.1) can be further written as,

E
{
(Z� A Z)Z Z�}

= E
{
( Z̃�D Z̃)(U� Z̃ Z̃�U ) = E

{
(

p∑
j=1

Z̃ 2
j d j)(U� Z̃ Z̃�U )

}

= U�E
{
(

p∑
j=1

Z̃ 2
j d j) Z̃ Z̃�}

U = U�[
E{ Z̃ j1 Z̃ j2(

p∑
j=1

Z̃ 2
j d j)}

]
U .

(A.2)

It should be noted that E{ Z̃ j1 Z̃ j2 (
∑p

j=1 Z̃ 2
j d j)} = 0 if j1 �= j2. Otherwise, when j1 = j2, the quantity of E{ Z̃ j1 Z̃ j2 (

∑p
j=1 Z̃ 2

j d j)}
becomes 2d j + ∑

j d j . Therefore, we have E
{
(Z� A Z)Z Z�

}
= 2σ 4 A + σ 4tr(A)I p . This completes the first part of the proof.

We next prove (ii). From the proof of (i), we have (δ� Aδ)δ j1δ j2 = Z̃ j1 Z̃ j2 (
∑p

j=1 Z̃ 2
j d j). According to the Cauchy-Schwartz 

inequality, we have

var
{
(δ� Aδ)δ j1δ j2

} ≤ p
∑

j

d2
j var

{
Z̃ 2

j Z̃ j1 Z̃ j2

}
.

When j1 �= j2, we have E( Z̃ 2
j Z̃ j1 Z̃ j2 ) = 0. Then, var

{
Z̃ 2

j Z̃ j1 Z̃ j2

} = E( Z̃ 4
j Z̃ 2

j1
Z̃ 2

j2
) < ∞. In addition, when j1 = j2, then 

var
{

Z̃ 2
j Z̃ j1 Z̃ j2

} = var
{

Z̃ 2
j Z̃ 2

j1

} ≤ E( Z̃ 4
j Z̃ 4

j1
) < ∞. Combining the results above, we then have var

{
(δ� Aδ)δ j1δ j2

}
< ∞, which 

completes the second part of this lemma. (iii) and (iv) can be proved similarly. This completes the entire proof.

Appendix B. Proof of Theorem 1

The consistency of �̂1 and �̂2 can be proved separately in the following two steps as min{K , N} → ∞.

Step I. We first prove that �̂2 →p �2. By definition, it suffices to prove �̂2,int →p �2 + 2−1tr(�2)I p , where �̂2,int =
K −1 ∑K

k=1 �̂
(k)
2,int . For any k = 1, · · · , K , by the Taylor series expansion, we have

�̂
(k)
2,int = (σ 4N)−1

N∑
i=1

{
�̇�(Xi, θ̂ )δ(k)

}
δ(k)δ(k)� + (σ 4N)−1

N∑
i=1

{
δ(k)��̈(Xi, θ̂ )δ(k)

}
δ(k)δ(k)�/2

+ (σ 4N)−1
N∑

i=1

{ p∑
j1=1

p∑
j2=1

p∑
j3=1

δ
(k)
j1

δ
(k)
j2

δ
(k)
j3

∂�3(Xi, θ
∗(k)
1 )

∂θ j1∂θ j2∂θ j3

}
δ(k)δ(k)�/6 � �

(k)
1 + �

(k)
2 + �

(k)
3 ,

where θ∗(k)
1 lies between θ̂ and θ̂ + δ(k) . One can easily verify that �(k)

1 = 0 by the definition of the M-estimator; we then 
only need to consider the last two parts, �(k)

2 and �(k)
3 , separately.

We first consider �(k)
2 . By the Taylor series expansion, we have

�
(k)
2 = 1

2
(σ 4N)−1

N∑{
δ(k)��̈(Xi, θ0)δ

(k)
}
δ(k)δ(k)�
i=1

9
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+1

4
(σ 4N)−1

N∑
i=1

{ p∑
j1=1

p∑
j2=1

δ
(k)
j1

δ
(k)
j2

(θ̂ − θ0)
� ∂�3(Xi, θ

∗(k)
2 )

∂θ j1∂θ j2∂θ

}
δ(k)δ(k)� .= �

(k)
21 + �

(k)
22 ,

where θ∗(k)
2 is located between θ̂ and θ0. We next consider �(k)

21 and �(k)
22 separately. By Lemma 1(i), we have E(�

(k)
21 ) =

�2 + 2−1tr(�2)I p , and by Lemma 1(ii) we have var(�(k)
21, j1 j2

) = O (1), where �(k)
21 = (�

(k)
21, j1 j2

) ∈ Rp×p . This immediately 

leads to K −1 ∑K
k=1 �

(k)
21 →p �2 + 2−1tr(�2)I p by Lemma 1(i) and (ii) again. In addition, by Condition (C1), 

...
�(Xi, θ∗) is 

uniformly bounded in a small neighborhood of θ0. Then, we have �(k)
22 = O p{‖θ̂ − θ0‖} = op(1) for any k. Combining the 

results above, we have K −1 ∑K
k=1 �

(k)
2 = �2 + 2−1tr(�2)I p + op(1).

We next consider �(k)
3 . By Condition (C1) again, 

...
�(Xi, θ) is bounded uniformly for θ in a small neighborhood of θ0. Then, 

there exists a finite positive constant C1 such that

�
(k)
3 ≤ (σ 4N)−1C1

N∑
i=1

{ p∑
j1=1

p∑
j2=1

p∑
j3=1

|δ(k)
j1

δ
(k)
j2

δ
(k)
j3

|
}
δ(k)δ(k)�/6 = O p(σ ) = op(1).

Combining the results above, we have completed the first part of the proof.

Step II. We next prove �̂1
p−→ �1. Similarly, it suffices to prove �̂1,int →p �1 +2−1tr(�1)I p , where �̂1,int = K −1 ∑K

k=1 �̂
(k)
1,int . 

For any k = 1, · · · , K , by the Taylor series expansion, we have

�(Xi, θ̂ + δ(k)) − �(Xi, θ̂ ) = δ(k)��̇(Xi, θ̂ ) + δ(k)��̈(Xi, θ̂ + η
(k)
i δ(k))δ(k)

for some constant η(k)
i lies between (0, 1). Accordingly, we obtain

�̂
(k)
1,int = 1

2
(σ 4N)−1

N∑
i=1

{
�̇�(Xi, θ̂ )δ(k) + δ(k)��̈(Xi, θ̂ + η

(k)
i δ(k))δ(k)

}2
δ(k)δ(k)�

= 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)��̇(Xi, θ̂ )

}2
δ(k)δ(k)�

+ (σ 4N)−1
N∑

i=1

{
�̇�(Xi, θ̂ )δ(k)δ(k)��̈(Xi, θ̂ + η

(k)
i δ(k))δ(k)

}
δ(k)δ(k)�

+ 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)��̈(Xi, θ̂ + η

(k)
i δ(k))δ(1)

}2
δ(k)δ(1)� � �

(k)
1 + �

(k)
2 + �

(k)
3 .

We next consider the above three parts separately. First, we consider �(k)
1 . Similar to the proof of Step I, we have

�
(k)
1 = 1

2
(σ 4N)−1

N∑
i=1

{
�̇�(Xi, θ0)δ

(k)
}2

δ(k)δ(k)�{
1 + op(1)

}
.

By Lemma 1(i) and (ii), and using a similar argument to that in the proof of Step I, we have K −1 ∑K
k=1 �

(k)
1 →p �1 +

2−1tr(�1)I p as min{N, K } → ∞.

We next consider �
(k)
2 . By Condition (C1), �̈(Xi, θ) is bounded uniformly in a small neighborhood of θ0 and 

var
{
�̇(Xi, θ0)

}
< ∞. Then, there exists a finite positive constant C2 such that

�
(k)
2 ≤ (σ 4N)−1

N∑
i=1

|�̇�(Xi, θ0)δ
(k)|δ(k)δ(k)�δ(k)δ(k)� = O p(σ ) = op(1).

Lastly, we consider �(k)
3 . Similarly, we have

�
(k)
3 = 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)��̈(Xi, θ0)δ

(k)
}2

δ(k)δ(k)�{
1 + op(1)

}
.

By Lemma 1(iii) and (iv), we have
10
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N−1
N∑

i=1

{
δ(k)��̈(Xi, θ0)δ

(k)
}2

δ(k)δ(k)� = O p(σ 6).

Then, we obtain K −1 ∑K
k=1 �

(k)
3 = O p(σ 2) = op(1) since δ(k)s are iid. Combining the results above, we then have

K −1
K∑

k=1

�̂
(k)
1,int = K −1

K∑
k=1

{
�

(k)
1 + �

(k)
2 + �

(k)
3

}
= K −1

K∑
k=1

�
(k)
1 + op(1) →p �1 + 2−1tr(�1)I p,

which completes the entire proof.

Appendix C. Proof of Theorem 2

Similar to the proof of Theorem 1, we prove the consistency of �̂n1 and �̂n2 separately in the following two steps.

Step 1. We first consider �̂n2. By definition, it suffices to prove �̂n2,int →p �̄2+2−1tr(�̄2)I p , where �̂n2,int =K −1 ∑K
k=1 �̂

(k)
n2,int . 

By the Taylor series expansion, we have

�̂
(k)
n2,int = (σ 4N)−1

N∑
i=1

{∂��(Xi, θ̂ , γ̂ )

∂θ
δ(k)

}
δ(k)δ(k)� + (σ 4N)−1

N∑
i=1

{
δ(1)� ∂�2(Xi, θ̂ , γ̂ )

∂θ∂θ� δ(k)
}
δ(k)δ(k)�/2

+ (σ 4N)−1
N∑

i=1

{ p∑
j1=1

p∑
j2=1

p∑
j3=1

δ
(k)
j1

δ
(k)
j2

δ
(k)
j3

∂�3(Xi, θ
∗(k)
n1 , γ̂ )

∂θ j1∂θ j2∂θ j3

}
δ(k)δ(k)�/6 � �

(k)
n1 + �

(k)
n2 + �

(k)
n3 ,

where θ∗(k)
n1 lies between θ̂ and θ̂ + δ(k) . One can easily verify that �(k)

n1 = 0 by the definition of the M-estimator, we then 
only need to consider the last two parts, �(k)

n2 and �(k)
n3 , separately. By Condition (C3), p < ∞, and the definition of δ(k) , 

there exists a finite positive constant Cn1 such that

�
(k)
n3 ≤ (σ 4N)−1Cn1

N∑
i=1

{ p∑
j1=1

p∑
j2=1

p∑
j3=1

|δ(k)
j1

δ
(k)
j2

δ
(k)
j3

|
}
δ(k)δ(k)�/6 = O p(σ ) = op(1),

which leads to K −1 ∑K
k=1 �

(k)
n3 = op(1) as δ(k)s are iid. We next consider �(k)

n2 . By the Taylor series expansion, we again have

�
(k)
n2 = 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)� ∂�2(Xi, θ0, γ̂ )

∂θ∂θ� δ(k)
}
δ(k)δ(k)�

+1

4
(σ 4N)−1

N∑
i=1

{ p∑
j1=1

p∑
j2=1

δ
(k)
j1

δ
(k)
j2

(θ̂ − θ0)
� ∂�3(Xi, θ

∗(k)
n2 , γ̂ )

∂θ j1∂θ j2∂θ

}
δ(k)δ(k)� .= �

(k)
n21 + �

(k)
n22,

where θ∗(k)
n2 lies between θ̂ and θ0. Similarly, by Condition (C3), we have �(k)

n22 = O p(σ ) = op(1) and K −1 ∑K
k=1 �

(k)
n22 = op(1). 

In addition, by a similar technique for proving �(k)
21 , we can find that �(k)

n21 = 1
2 (σ 4N)−1 ∑N

i=1

{
δ(k)� ∂�2(Xi ,θ0,γ0)

∂θ∂θ� δ(k)
}
δ(k) ×

δ(k)�{1 + op(1)} and K −1 ∑K
k=1 �

(k)
n21 →p �̄2 + 2−1tr(�̄2)I p . Combining the results above, we have competed the first part 

of the proof.

Step 2. We next consider �̂n1. By definition, it suffices to prove �̂n1,int →p �̄1+2−1tr(�̄1)I p , where �̂n1,int =K −1 ∑K
k=1 �̂

(k)
n1,int . 

For any k = 1, · · · , K , by the Taylor series expansion, we have

�(Xi, θ̂ + δ(k), γ̂ ) − �(Xi, θ̂ , γ̂ ) = δ(k)� ∂�(Xi, θ̂ , γ̂ )

∂θ
+ δ(k)� �2(Xi, θ̂ + η

∗(k)
i δ(k), γ̂ )

∂θ∂θ� δ(k)

for some constant η∗(k) lies between (0, 1). Accordingly, we obtain
i

11
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�̂
(k)
1,int = 1

2
(σ 4N)−1

N∑
i=1

{∂��(Xi, θ̂ , γ̂ )

∂θ
δ(k) + δ(k)� �2(Xi, θ̂ + η

∗(k)
i δ(k), γ̂ )

∂θ∂θ� δ(k)
}2

δ(k)δ(k)�

= 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)� ∂�(Xi, θ̂ , γ̂ )

∂θ

}2
δ(k)δ(k)�

+ (σ 4N)−1
N∑

i=1

{∂��(Xi, θ̂ , γ̂ )

∂θ
δ(k)δ(k)� �2(Xi, θ̂ + η

∗(k)
i δ(k), γ̂ )

∂θ∂θ� δ(k)
}
δ(k)δ(k)�

+ 1

2
(σ 4N)−1

N∑
i=1

{
δ(k)� �2(Xi, θ̂ + η

∗(k)
i δ(k), γ̂ )

∂θ∂θ� δ(k)
}2

δ(k)δ(k)� � �
(k)
n1 + �

(k)
n2 + �

(k)
n3 .

We next consider the above three parts separately. Similar to the proofs for �(k)
2 and �(k)

3 , by Conditions (C3) and (C4), one 
can verify that K −1 ∑K

k=1 �
(k)
n2 = op(1) and K −1 ∑K

k=1 �
(k)
n3 = op(1) because σ → 0. Then, we only need to consider �(k)

n1 . By 
Taylor series expansion, we can obtain that

∂�(Xi, θ0, γ̂ )

∂θ
− ∂�(Xi, θ0, γ̂ )

∂θ
= ∂2�(Xi, θ0, γ0)

∂θ∂γ
(γ̂ − γ0){1 + op(1)}.

In addition, by Condition (C4), we have E
{
∂2�(Xi, θ0, γ0)/∂θ∂γ

} = 0. Using this result, one can then verify that

�
(k)
n1 = 1

2
(σ 4N)−1

N∑
i=1

{∂��(Xi, θ0, γ0)

∂θ
δ(k)

}2
δ(k)δ(k)�{

1 + op(1)
}
.

By Lemma 1(i) and (ii), and using a similar argument to that in the proof of Theorem 1, we have K −1 ∑K
k=1 �

(k)
n1 →p

�̄1 + 2−1tr(�̄1)I p as min{N, K } → ∞, which completes the entire proof.

Appendix D. Analytical form of the covariance matrix of the model in Setting 4

To obtain the analytical form of the covariance matrix of the multiplicative model in Setting 4, we need to know the 
analytical forms of �1 and �2. Accordingly, we know that �1 = E

[
L̇(θ)L̇�(θ)

]
/N and �2 = E

[
L̈(θ)

]
/N . To this end, the key 

problem is to calculate L̇(θ) and L̈(θ). Since the loss function L(θ) in Setting 4 is defined as

L(θ) = 1

2

N∑
i=1

[{ Yi − exp(X�
i θ)

Yi

}2 + { Yi − exp(X�
i θ)

exp(X�
i β)

}2
]
,

its first order derivative, L̇(θ), is derived as L̇(θ) = − 
∑N

i=1(zi1 − zi2 + zi3 − zi4), where zi1 = exp(X�
i β)Xi/Yi , zi2 =

{exp(X�
i β)}2 Xi/Y 2

i , zi3 = Xi Y 2
i /{exp(X�

i β)}2, and zi4 = Xi Yi/ exp(X�
i β). Then we have,

�1 = 1

N

N∑
i=1

E
{
(zi1 − zi2 + zi3 − zi4)(zi1 − zi2 + zi3 − zi4)

�}

= 1

N

N∑
i=1

E
{

zi1z�
i1 − 2zi1z�

i2 + 2zi1z�
i3 − 2zi1z�

i4 + zi2z�
i2 − 2zi2z�

i3

+ 2zi2z�
i4 + zi3z�

i3 − 2zi3z�
i4 + zi4z�

i4

}

= 1

N

N∑
i=1

E(zi1z�
i1) − 2E(zi1z�

i2) + 2E(zi1z�
i3) − 2E(zi1z�

i4) + E(zi2z�
i2)

− 2E(zi2z�
i3) + 2E(zi2z�

i4) + E(zi3z�
i3) − 2E(zi3z�

i4) + E(zi4z�
i4).

(A.3)

According to Setting 4, we know log(Yi) = X�
i β + log(εi), where log(εi) ∼ N(0, 1). We then have log(Yi) ∼ N(X�

i β, 1). 
Therefore, the conditional moments of Yi can be obtained as E(Y t

i |Xi) = exp(X�
i βt + t2/2), where t ∈R. Then, we have the 

following calculations as
12
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E(zi1z�
i1) = E(zi4z�

i4) = E
[

Xi X�
i exp(2X�

i β)/Y 2
i

]
= exp(2)E(Xi X�

i )

E(zi1z�
i2) = E(zi3z�

i4) = E
[

Xi X�
i exp(3X�

i β)/Y 3
i

]
= exp(9/2)E(Xi X�

i )

E(zi1z�
i3) = E(zi2z�

i4) = E
[

Xi X�
i Y i/exp(X�

i β)
]

= exp(1/2)E(Xi X�
i )

E(zi2z�
i2) = E(zi3z�

i3) = E
[

Xi X�
i exp(4X�

i β)/Y 4
i

]
= exp(8)E(Xi X�

i )

E(zi1z�
i4) = E(zi2z�

i3) = E(Xi X�
i ).

(A.4)

By plugging (A.4) into (A.3), we can obtain the final analytical result of �1. This completes the calculation of �1. Next, 
we consider the calculation of �2. The second order derivative L̈(θ) is derived as L̈(θ) = ∑N

i=1(wi1 − wi2), where wi1 =
Xi X�

i Y i{2Yi − exp(X�
i β)}/ exp(2X�

i β) and wi2 = Xi X�
i exp(X�

i β){Yi − 2 exp(X�
i β)}/Y 2

i . Then, we have

�2 = 1

N
E
[
�̈(Xi, θ)

] = 1

N

N∑
i=1

E(wi1 − wi2) = 1

N

N∑
i=1

{
E(wi1) − E(wi2)

}
. (A.5)

Accordingly, we have the following calculation as

E(wi1) = E
[

Xi X�
i Y i{2Yi − exp(X�

i β)}
]
/E

{
exp(2X�

i β)
}

= E
[

Xi X�
i

{
2E(Y 2

i |Xi) − exp(X�
i β)E(Yi |Xi)

}]
/E

{
exp(2X�

i β)
}

= E
[

Xi X�
i {2 exp(2) − exp(1/2)}

]
.

(A.6)

We can calculate E(wi2) in the same way. Given careful derivation, we find E(wi2) = E(wi1) = E
[

Xi X�
i {2 exp(2) −

exp(1/2)}
]

. Therefore, by plugging (A.6) into (A.5), and by the fact that E(wi2) = E(wi1), we can obtain the analytical 
form of �2. This completes the calculation of �2. With the derived analytical forms of �1 and �2, we can obtain the 
sandwich-type covariance matrix by calculating �−1

2 �1�
−1
2 .
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