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A B S T R A C T

We propose in this paper a noisy rational expected equilibrium (NREE) model by taking
both public and private information into account with an embedded information network
structure among market traders. We derive closed-form expressions for five variables about
market reaction and market quality as a function of the topological structure of the network,
and we obtain several novel results. First, the information network directly affects the price
discovery of private information, but it indirectly influences the price discovery of public
information. Second, network connectedness negatively influences both price change and
trading volume, while network uniformity only affects trading volume positively and does not
impact price change. Third, network connectedness suppressed the marginal effect of public
disclosure on market quality, i.e., the information sharing among traders weakens the market
quality improvement caused by public disclosure. We extend the NREE model and document
a crowding-out effect of information networks in the price discovery of public disclosure.
The mechanism of the crowding-out effect also provides a theoretical interpretation of the
under-reaction of public disclosure in the market.

1. Introduction

With the rapid development of modern social media technologies and products, such as Weibo in China and Twitter in the
U.S., social interaction among investors is becoming increasingly frequent and intensive, which results in a large-scale information
network among market traders. This information network changes the operation manners of the stock market by influencing private
information sharing among traders and hence asset price. More and more literature explored the important role of information
networks and provided many insightful opinions in the past decade. Excellent examples could be found in Ozsoylev and Walden
(2011), and Walden (2019). In practice, investors can obtain information from not only private information channels but also public
disclosure, which is crucial in the stock market, especially for retail traders. Now that the information network has become vital in
traders’ decision-making, it naturally raises the following two important questions. First, how does the information network influence
the information integration process of public disclosure? Second, how does the information network influence the outcomes of public
disclosure, such as the market reaction and market quality changes?
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To explore the two questions above, we propose a noisy rational expectations equilibrium (NREE) model by taking both public
nd private information into account with an embedded information network structure among market traders. We get several
nteresting results by analyzing the proposed NREE model. First, an information network can directly influence the price integration
f private information by improving information precision and correlations of different information. In contrast, it can indirectly
nfluence the price integration of public information by passively adjusting investors decision weight of such information.

Second, we propose two network structure measurements and examine their roles in market reaction. They are, respectively,
etwork connectedness and network uniformity. Particularly, network uniformity is a new concept used to describe a network’s
ispersion. We show that the price change is only affected by network connectedness. The greater the network connectedness is,
he smaller the price change will be. However, the trading volume is affected by both connectedness and uniformity. The greater the
etwork connectedness is, the smaller the trading volume will be. The greater the uniformity is, the greater the trading volume will
e. It should be noted that network connectedness reflects the average number of neighbors in a network, which is used to decide
he average belief in the market. Therefore, network connectedness is highly related to price change since price change usually
eflects the average belief change of investors. Furthermore, the trading volume reflects the opinion disagreements in the market,
hich is consistent with the implication of uniformity.

Third, we examine the influence of network structure on market quality changes due to public disclosure. As we know, market
uality reflects the efficiency of price aggregation of information. So a more precise public disclosure always indicates a better
arket quality. However, the marginal effect of public disclosure on market quality is suppressed by network connectedness. The
etwork brings down the relative importance of public disclosure, decreasing the weight that investors put on public disclosure,
hich is the network’s crowding-out effect in the price integration process of public disclosure. In other words, the information
etwork reduces the marginal effect of public disclosure. This also explains why the price tends to under-react to public disclosure.

The implications of our theoretical model provide guidance for empirical studies that examine the relationship between
nformation networks and market reaction. Specifically, our theoretical analysis demonstrates that the information network may
rowd out public disclosure. The underlying mechanism can be tested from the perspective of market reaction. By event study,
e can figure out the absolute value of abnormal returns and the abnormal trading volumes caused by public disclosure, which

epresents the range of price change and trading volume, respectively. We can then construct the information network based on
ome rules, such as the common shareholding data of mutual funds (Wang et al., 2018; Chen and Li, 2021). It is convenient to test
he proposed mechanism empirically by checking the relationship between information networks and market reaction.

Our paper makes the following three contributions. First, we extend the standard NREE model (Hellwig’s model) to simultane-
usly consider public information, private information, and an embedded information network. Consequently, we can investigate
ow the network affects the price integration process of public disclosure. Second, we extend the structure definition in network
nalysis and propose a new concept of network uniformity. The variable of network uniformity provides new insight into the role
f the network in asset pricing. Finally, the mechanism proposed in this article also helps us understand why prices do not respond
ell to public disclosure in the stock market, especially in the emerging market.

Our research is meaningful for regulators in emerging markets such as China’s stock market. On the one hand, the stock market
s heavily influenced by retail investors (Lu et al., 2022), and the information network is more massive and complex compared with
he developed market. On the other hand, emerging markets usually suffer from immature trading systems, imperfect information
isclosure, low investor literacy, and pricing power in the hands of retail investors. As a result, the market price is more likely to
nder-react to the public disclosure (Wu, 2013). The existence of information networks may further amplify this underreaction by
ecreasing the relative importance or the decision weights of public disclosure. Analyzing the relationship between information
etwork structure and the price incorporation process of public disclosure will facilitate a positive response in capital market
overnance and investor regulation in emerging markets.

The rest of the paper is organized as follows. Section 2 discusses the literature on the NREE model and the relationship between
ocial interaction, pricing, and public disclosure. In Section 3, we introduce the notation used in this paper. We then introduce the
odel and methods to solve the market equilibrium in Section 4. The main results about the properties of information networks

n market reaction and market quality changes are presented in Sections 5 and 6, respectively. Finally, we conclude the paper in
ection 7. All the technical proofs are in Appendix.

. Literatures

Our analysis relies on the NREE model that has been used extensively in the literature on information in financial markets.
he NREE model provides a simple but useful method to study the relationship between private information and asset pricing
see, e.g., Hellwig, 1980; Han et al., 2016; Mondria and Yang, 2022). In this framework, investors trade in the market based
n their information set, and the CARA-Norm preferences keep investors’ demand as a function of price. Then the market-clear
ondition decides the equilibrium price. The NREE model expresses equilibrium price as the linear weights of different kinds of
nformation. Including an information network and public disclosure may change different kinds of information’s correlation and
elative precision. Consequently, investors will change the weights they put on different kinds of information when making the
rade. This suggests that the information network can influence the price integration of public disclosure.

Our research is also related to the literature on the relationship between social interaction and pricing. Existing studies can be
plit into two categories. One stream of empirical analyses focused on the impact of the heterogeneous positions of individuals in
network on investors’ portfolio returns. For example, Cohen et al. (2008) found that fund managers placed larger bets on firms
2

ith whom fund managers share the same education background as firm board members. Trading in ‘‘connected’’ stocks brought in
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positive abnormal returns compared to trading in ‘‘non-connected’’ stocks. Cici et al. (2017) looked at the intra-family network of
fund managers and showed that this type of network also increased investment value. In addition, El-Khatib et al. (2021) constructed
the information network among company executives based on their social context. They found that CEO in the core position in a
network had better social capital, and his insider trading could gain extra returns. Core position members of the network can profit
by explicit mispricing.

The second stream of theory literature focused on how the information network contributed to market aggregate variables, such
s trading volume, market liquidity, and price informativeness. For instance, Colla and Mele (2010) assumed that investors shared
heir information in a cycles-type network. Then, they proved that information linkages raise volume and price informativeness
ased on the market-neutral pricing rules proposed by Kyle (1985). Ozsoylev and Walden (2011) discussed the same problems
nder the NREE framework proposed by Hellwig (1980). They found that several aggregate properties of the market were typically
on-monotonic functions of network connectedness. However, different from Kyle (1985)’s neutral pricing rules, in emerging
arkets, such as China, the market traders are all risk-averse and do not need to induce market markers. Thus, our work is more

elated to Ozsoylev and Walden (2011). Furthermore, Han and Yang (2013) highlight the importance of information acquisition in
xamining the implications of information networks for financial markets. They found that when information is exogenous, social
nteraction improves market efficiency. However, social interaction crowd out information production due to traders’ incentives to
‘free ride’’ on informed friends. As a result, social interaction hurts market efficiency when information is endogenous.

Our research belongs to the second category of the above literature. We focus on the network’s role in asset pricing, especially for
arket aggregate variables caused by public disclosure, such as price change and trading volume. As shown by Goldstein and Yang

2017), people cannot ignore public information in asset pricing for several reasons. First, public information usually consists of the
election of government (Bond and Goldstein, 2015) and publicly-listed firms’ disclosures (Gao and Liang, 2013). Both government
nd firms are the core participants in financial markets. Second, a huge amount of empirical literature has demonstrated that
ublic information improves market quality and facilitates the price discovery process (Tetlock, 2010; Savor, 2012; Landsman et al.,
012; Frenkel et al., 2020). Third, existing researches show that public information may also crowd out the production of private
nformation, which will affect the pricing process and then market quality (Diamond, 1985; Han et al., 2016; Dugast and Foucault,
018; Kendall, 2018). Goldstein and Yang (2019) studied the effect from the perspective of multiple dimensions of uncertainty. Xue
nd Zheng (2021) studied the public disclosure choice problems in the capital market. They found that firm improved its disclosure
uality when investors were informed with better private signals.

In terms of technical details, our proposed model is most related to previous work done by Kim and Verrecchia (1991), Ozsoylev
nd Walden (2011), and Han and Yang (2013), but there are three main differences. First, our model is a three-period dynamic
odel that integrates public information from the market. This setting differs from Ozsoylev and Walden (2011)’s model. Second,
network structure is used to deal with private information, which differs from the one used in Kim and Verrecchia (1991). Third,

he network structure used in our paper is more general compared with that in Han and Yang (2013). We can verify that the
odels of Kim and Verrecchia (1991) and Ozsoylev and Walden (2011) are two special cases of our model. Their conclusions about
rivate information, public information, and welfare also apply to our model. Regarding the research topic, our work is mainly
elated to the empirical analysis of Wang et al. (2018). They construct the holding-based network of mutual funds to empirically
nalyze how information diffusion via the network affects the outcomes of public announcements. Their results show that before the
arnings announcement, a higher density of information network can help to reduce dis-agreement among funds and thus facilitate
he earnings information reflected in stock price. Compared with their work, our work has two main differences. First, they build a
etwork via holding-based data of mutual funds, which is controversial in academics, but our work is pure theoretically and hence
an be more general. Second, their conclusions are based on the event study and only set up before the announcement, which
eflects the information leakage rather than the network’s role in pricing. Our theoretical analysis strengthens the research on the
ffect of public disclosure.

. Notation

Unless specified, we always use the following notations: lower case thin letters stand for scalars, upper case thin letters represent
ets or functions, lower case bold letters stand for vectors, upper case bold letters represent matrices, and the calligraphy letters
epresent structures (e.g., GN stands for a network).

For a vector 𝐲, we define the vector norm as ‖𝐲‖𝑝 = (
∑

𝑖(𝐲
𝑝
𝑖 ))

1∕𝑝, and ‖𝐲‖∞ = max𝑖 |(𝐲𝑖)|. The matrix norm is defined as
𝐀‖𝑝 = sup𝐲∶‖𝐲‖𝑝=1 ‖𝐀𝐲‖𝑝. We use the notation 𝑑𝑖𝑎𝑔(𝐝) to summarize a diagonal matrix, where 𝐝 is a vector. We use 𝑇 at the

right-upper of a matrix or vector to denote the transpose. For convenience, a specific vector is defined as 𝟏𝑇𝑛 = (1, 1,⋯ , 1)𝑇 , or
sometimes 1. We write [𝐀]𝑖𝑗 for the scalar in the 𝑖th row and 𝑗th column of matrix 𝐀.

We say that 𝑓 (𝑛) = 𝑜(𝑔(𝑛)) if lim𝑛→∞ 𝑓 (𝑛)∕𝑔(𝑛) = 0, and 𝑓 (𝑛) = 𝑂(𝑔(𝑛)) if lim𝑛→∞ 𝑓 (𝑛)∕𝑔(𝑛) = 𝐶, where 0 < 𝐶 < ∞ is a constant. If
the conditions hold in probability, we say that 𝑓 (𝑛) = 𝑜𝑝(𝑔(𝑛)) and 𝑓 (𝑛) = 𝑂𝑝(𝑔(𝑛)), respectively.

4. The model and market equilibrium

We follow the economic analysis in Kim and Verrecchia (1991), but allow for network relationships between traders in the
model. We allow traders to exchange private information about the payoff of the risky asset with their neighbors. This is similar to
the model extension from Hellwig (1980) to Ozsoylev and Walden (2011) and Han and Yang (2013), or from Kyle (1985) to Colla
3

and Mele (2010).
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4.1. The network setting

We adopt the network settings from Ozsoylev and Walden (2011) with some minor modifications. We use G𝑛 = (𝑛,𝐀) to
summarize a graph with 𝑛 traders whose relationships are recorded by an adjacency matrix 𝐀. The adjacency matrix is in the form
𝐀 = (𝑎𝑖𝑗 ) ∈ R𝑛×𝑛, where 𝑎𝑖𝑗 = 1 if trader 𝑖 is connected with trader 𝑗 and 𝑎𝑖𝑗 = 0 otherwise (𝑖 ≠ 𝑗). Following the conventions, each
trader is connected with herself, that is, 𝑎𝑖𝑖 = 1. We use matrix 𝐖 = (𝑤𝑖𝑗 ) ∈ R𝑛×𝑛 to represent the number of common neighbors
between traders 𝑖 and 𝑗. Based on the definition of 𝐀, 𝐖 = 𝐀𝐀𝑇 , i.e., 𝑤𝑖𝑗 =

∑𝑛
𝑘=1 𝑎𝑖𝑘𝑎𝑗𝑘. Particularly, 𝑤𝑖𝑖 is just the number of

neighbors for trader 𝑖.
To facilitate the following inference, we first make four assumptions about the network topology as given below1:
(i). Traders with more neighbors receive more precise signals;
(ii). All else equal, connected traders have higher signal correlation than non-connected ones;
(iii). If two traders have no common neighbors, then the error terms of their signals are uncorrelated;
(iv). Traders who have the same neighbors receive the same signals.
All assumptions above are mild and quite reasonable. Assumptions (i), (ii) and (iv) can correspond to a linear information

structure which is easy to calculate. Especially, assumption (iii) is a traditional NREE condition (Hellwig, 1980) which indicates
independent error terms between different traders.

Similar to Ozsoylev and Walden (2011), besides assumptions (i), (ii), (iii) and (iv), we require the information network to have
the following two important properties:

‖𝐖𝑛‖∞ = 𝑜𝑝(𝑛), (1)

lim
𝑛→∞

∑𝑛
𝑖=1(𝐖

𝑛)𝑖𝑖
𝑠2𝑛

= 𝑏 + 𝑜𝑝(1), (2)

where 𝑠 is a bounded positive constant, Eq. (1) means that, for each trader, his/her connected neighbors cannot go to infinity.
Equation (1) is shown to be true when the degree distribution is power-low, and 𝑏 will be an existing constant when the parameter
of power-low distribution is larger than 2 (Ozsoylev and Walden, 2011). Eq. (2) suggests a sparse network structure where the
number of connections is in the same order as the number of nodes. The constant 𝑏 represents the network connectedness because it
reflects the average connections among all the traders. A larger value of 𝑏 means a more connective network. Moreover, we define
in this paper network uniformity as:

lim
𝑛→∞

∑

([𝐖]𝑖𝑖 −
[𝐖]𝑖𝑖
𝑛 )

𝑛
= 𝑢. (3)

A smaller value of 𝑢 means less difference among traders on the network connection, i.e., the network is more uniform among
traders.

4.2. The basic economy setting

We consider a pure exchange economy with 𝑛 traders which are indexed by 𝑖, where 𝑖 = 1, ⋯, 𝑛. In this economy, all traders
face three time periods, referred to as periods 1, 2, and 3. Trading occurs in periods 1 and 2, while consumption happens in period
3. There are two kinds of assets in the market, a risky asset and a riskless bond. One unit of the riskless bond pays off one unit of
consumption good in period 3. The return of the risky asset is a normally distributed random variable �̃� with mean 𝑢 and variance
ℎ2, and the return will be realized in period 3.

In period 1, each trader is endowed with 𝑧𝑖 risky assets and 𝑒𝑖 riskless bonds. The total supply of risky assets is the total
endowment of risky assets, which equals �̃�𝑡𝑜𝑡𝑎𝑙 =

∑

𝑧𝑖 = 𝑛�̃�. It is not known to individual traders, where �̃� ∼ 𝑁(𝑧, 𝛿2).2 All traders
in the market observe two kinds of information, one is a public information signal �̃�1 = �̃� + �̃� where �̃� ∼ 𝑁(0, 𝑚2

1), and the other is
an initial private information signal 𝜏𝑖 = �̃� + 𝜖𝑖 where 𝜖𝑖 ∼ 𝑁(0, 𝑠2). It is assumed that 𝑠2 is uniformly bounded. Particularly, due to
the information network, traders can share initial private information with their connected neighbors before the market opens. This
kind of information sharing form a new private signal �̃�𝑖 for trader 𝑖, which is defined as:

�̃�𝑖 = 𝐹𝑖(𝜏1,… , 𝜏𝑛|G𝑛).

According to the assumptions (i), (ii), (iii) and (iv) aforementioned in Section 4.1, we define 𝐹𝑖 as a linear information communi-
ation rule as:

�̃�𝑖
𝑑𝑒𝑓
=

∑

𝑘∈𝑅𝑖
𝜏𝑘

[𝐖]𝑖𝑖
.

1 Detail interpretation about the four hypotheses are illustrated by an example in Appendix E.
2 As pointed out by Grossman (1978), Grossman and Stiglitz (1980), the random supply �̃�𝑡𝑜𝑡𝑎𝑙 serves as an additional source of uncertainty which prevents

securities prices from fully revealing all the private information in the market.
4
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With this linear communication rule, we re-write the new private signal as �̃�𝑖 = �̃� + �̃�𝑖, where �̃�𝑖 is a normally distributed random
ariable with mean zero and variance 𝑠2𝑖 . Particularly, the random vector �̃� = (�̃�1,… , �̃�𝑛) is multivariate normally distributed with
ean zero and covariance matrix [𝐒]𝑖𝑗 = 𝑐𝑜𝑣(�̃�𝑖, �̃�𝑗 ), and according to Ozsoylev and Walden (2011), the covariance matrix 𝐒 can be

decomposed as3:

𝐒 = 𝑠2𝐃−1𝐖𝐃−1, (4)

where 𝐃 = 𝑑𝑖𝑎𝑔([𝐖]11,… , [𝐖]𝑛𝑛). At the end of the period 1, the market opens, and all traders buy and sell securities at competitive
market prices based on the information they receive.

At the beginning of the period 2, there is a new public disclosure, that is �̃�2 = �̃�+ �̃�, where �̃� ∼ 𝑁(0, 𝑚2
2). According to the updated

information, traders have another round of trading at the end of the period 2. Finally, in period 3, the return of the risky assets is
realized, and consumption occurs. As the common setting in NREE literature, we also assume that all random variables are mutually
independent.

Traders are all risk-averse, and a negative exponential utility function can represent their performances, i.e., the CARA utility
function. Without loss of generality, we assume the risk tolerances for all traders are equal to one,4 i.e., 𝑈𝑖(�̃�𝑖) = − exp(−�̃�𝑖). Trader
𝑖’s final wealth �̃�𝑖 can be written as 𝑒𝑖 + �̃�1𝑧𝑖 + (�̃�2 − �̃�1)𝑑1𝑖 + (�̃�− �̃�2)𝑑2𝑖, where �̃�1 and �̃�2 are the prices of risky assets in periods 1 and
, and 𝑑1𝑖 and 𝑑2𝑖 are optimal demand of the risky assets in each period. With the incorporation of an information network, traders
ill update their beliefs about the risky assets from their neighbors. This heterogeneity caused by the network topology is the core
nalysis in this paper.

.3. The equilibrium

Traders also know �̃�1 and �̃�2 can reflect the information set held by other traders. Therefore, traders make self-fulfilling
onjectures about the relation between prices and trade information in a rational expectation equilibrium. Following Hellwig (1980)
nd Kim and Verrecchia (1991), we conjecture �̃�1 and �̃�2 can be written as:

�̃�1 = 𝜋0 + 𝜋1�̃�1 +
∑

𝛽𝑖�̃�𝑖 + 𝛾1�̃�𝑡𝑜𝑡𝑎𝑙 , (5)

�̃�2 = 𝜋′
0 + 𝜋′

1�̃�1 + 𝜋′
2�̃�2 +

∑

𝛽′𝑖 �̃�𝑖 + 𝛾2�̃�𝑡𝑜𝑡𝑎𝑙 . (6)

n Eq. (5), �̃�1 is the equilibrium price in period 1, �̃�1 is the public information (e.g. pre-announcements) published in period 1, �̃�𝑖
s the network information that each trader can learn from the market, and �̃�𝑡𝑜𝑡𝑎𝑙 is the noisy information from noisy traders. The
conomic implication of the equation is that the equilibrium price in period 1 should be a linear combination of all the available
nformation in the market, which is also an analytic form of effective market hypotheses. The economic implication of Eq. (6) is
he same as that in period 1, except that there is a piece of new public information (e.g., announcements �̃�2) in the market. The
bove equations are different from those in Hellwig (1980), and Kim and Verrecchia (1991) because private information �̃�𝑖 cannot
e fully removed due to their mutual correlation.

To simplify the analysis of our model, we further assume that the working mechanism of the information network in pricing is
table across different periods. With this assumption, private information plays the same role in different periods. This suggests that
′
𝑖 = 𝑘𝛽𝑖, where 𝑘 is a positive constant. Then we can easily conjecture that �̃�2 must contains �̃�1, because �̃�2 contains all the available
nformation in �̃�1. The relationship between �̃�2 and �̃�1 is consistent with our intuition that the later pricing process depends on the
revious one.

Given the conjectured prices outlined in (5) and (6), all traders choose their optimal demand for the risky assets at the end
f periods 1 and 2 by maximizing their utilities. We use a typical reverse recursive method to solve this dynamic programming
roblem. We first solve the maximizing problem in period 2 and then fold back the results into period 1. In period 2, trader 𝑖’s
vailable information set consists of the first period public signal �̃�1, the private information �̃�𝑖 which is updated from the information
etwork, the second period public disclosure �̃�2, and the two price signals �̃�1 and �̃�2. The information contained in �̃�1 and �̃�2 is equal
o the following signals:

𝑞1 =
�̃�1 − 𝜋0 − 𝜋1�̃�1

∑

𝛽𝑖
= �̃� +

∑

𝛽𝑖�̃�𝑖
∑

𝛽𝑖
+

𝛾1
∑

𝛽𝑖
�̃�𝑡𝑜𝑡𝑎𝑙 , (7)

𝑞2 =
�̃�2 − 𝜋′

0 − 𝜋′
1�̃�1 − 𝜋′

2�̃�2
∑

𝛽′𝑖
= �̃� +

∑

𝛽′𝑖 �̃�𝑖
∑

𝛽′𝑖
+

𝛾2
∑

𝛽′𝑖
�̃�𝑡𝑜𝑡𝑎𝑙 , (8)

where 𝑐1 =
𝛾1

∑

𝛽𝑖
and 𝑐2 =

𝛾2
∑

𝛽′𝑖
. According to Kim and Verrecchia (1991), if 𝑐1 ≠ 𝑐2, no trading will occur under the situation of

fully revealed price information. Thus, we also conjecture that 𝑐1 = 𝑐2.5 This further implies 𝑞1 = 𝑞2, i.e., the two price signals are

3 The detail expanded form of matrix 𝐒 is given in Appendix E.
4 Assuming heterogeneous risk tolerance does not impact the main results of this paper.
5 It should be noted that Kim and Verrecchia (1991) proved this result without terms �̃�𝑖 by the direct usage of large number theory. Based on stable network

assumption, the terms �̃� can be fully removed by subtraction. Therefore our model also meets this conjecture.
5

𝑖
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perfect substitutes. Let 𝑐1 = 𝑐2 ≡ 𝑐 and 𝑞1 = 𝑞2 ≡ 𝑞. The information set in periods 2 and 1 can be transferred to {�̃�1, �̃�2, �̃�𝑖, 𝑞} and
{�̃�1, �̃�𝑖, 𝑞}, respectively

Let 𝑑2𝑖 be the optimal demand of the risky asset for trader 𝑖 in period 2. Due to the CARA-norm setup on utility function and
error terms’ multivariate normal distribution, 𝑑2𝑖 takes a simple expression as:

𝑑2𝑖 =
(�̃�2𝑖 − �̃�2)

𝛽∗𝑖
, (9)

where �̃�2𝑖 = 𝐸[�̃�|�̃�1, �̃�2, �̃�𝑖, 𝑞] and 𝛽∗𝑖 = var[�̃�|�̃�1, �̃�2, �̃�𝑖, 𝑞] are the condition expectation and variance for the payoff of the risky asset
hen information set is given. Then we can get the risky asset’s price at period 2 as described below.

heorem 1. Under the market clearing condition �̃�𝑡𝑜𝑡𝑎𝑙 =
∑

𝑑2𝑖, as the number of traders in the economy goes to infinity, the equilibrium
rice in period 2 will converge to

�̃�2 =
𝑚2
1𝑚

2
2𝛿

2𝑢 + 𝑚2
1𝑚

2
2ℎ

2𝑏𝑧
𝑘2

+
ℎ2𝑚2

2𝛿
2

𝑘2
�̃�1 +

ℎ2𝑚2
1𝛿

2

𝑘2
�̃�2+

(ℎ2𝑚2
1𝑚

2
2𝛿

2𝑏 + ℎ2𝑚2
1𝑚

2
2𝑏

2)
𝑘2

�̃� −
(ℎ2𝑚2

1𝑚
2
2𝛿

2 + ℎ2𝑚2
1𝑚

2
2𝑏)

𝑘2
�̃�, (10)

where 𝑘2 = 𝑚2
2𝑚

2
1ℎ

2𝛿2𝑏 + 𝑚2
1𝑚

2
2ℎ

2𝑏2 + 𝑚2
1𝑚

2
2𝛿

2 + ℎ2𝑚2
2𝛿

2 + ℎ2𝑚2
1𝛿

2.

According to the equilibrium condition, we can easily know that (6) and (10) are identical. Therefore, we must have:

𝜋′
0 =

𝑚2
1𝑚

2
2𝛿

2𝑢 + 𝑚2
1𝑚

2
2ℎ

2𝑏𝑧
𝑘2

,

𝜋′
1 =

ℎ2𝑚2
2𝛿

2

𝑘2
,

𝜋′
2 =

ℎ2𝑚2
1𝛿

2

𝑘2
,

∑

𝛽′𝑖 =
ℎ2𝑚2

1𝑚
2
2𝛿

2𝑏 + ℎ2𝑚2
1𝑚

2
2𝑏

2

𝑘2
,

𝛾2 = −
ℎ2𝑚2

1𝑚
2
2𝛿

2 + ℎ2𝑚2
1𝑚

2
2𝑏

𝑘2
.

Then we fold back the result to period 1. In period 1, trader 𝑖 chooses the optimal demand of the risky asset given signals �̃�1, �̃�𝑖
and �̃�1. Recall that trader 𝑖’s wealth is �̃�𝑖 = 𝑒𝑖 + �̃�1𝑧𝑖 + (�̃�2 − �̃�1)𝑑1𝑖 + (�̃�− �̃�2)𝑑2𝑖 and they also knows the equilibrium price and optimal
demand in period 2. Then the maximization problem in period 1 for trader 𝑖 is to:

max
𝑑1𝑖

𝐸
[

𝑈𝑖
(

𝑤𝑖
)

|�̃�1, �̃�𝑖, �̃�1
]

(11)

= max
𝑑1𝑖

𝐸
[

−exp
{

𝑒𝑖 + �̃�1𝑧𝑖 + (�̃�2 − �̃�1)𝑑1𝑖 + (�̃� − �̃�2)𝑑2𝑖
}

|�̃�1, �̃�𝑖, 𝑞
]

,

subject to (9) and (10).
By solving the maximizing problem above, we get the optimal demand of the risky asset for trader 𝑖 in period 1 as:

𝑑1𝑖 =
𝑘2

ℎ2𝑚2
1𝛿

2
(𝑚2

1𝛿
2𝑢 + ℎ2𝑚2

1𝑏𝑧 + ℎ2𝛿2�̃�1) +
[ (ℎ2𝑚2

1𝑏
2 + ℎ2𝑚2

1𝛿
2𝑏)𝑘2

(ℎ2𝑚2
1𝛿

2)2

− 𝑏
]

𝑞 −

(

𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘2𝑘1
(ℎ2𝑚2

1𝛿
2)2

)

�̃�1, (12)

where:

𝑘1 =𝑚2
1ℎ

2𝛿2𝑏 + 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2,

𝑘2𝑖 =𝑚2
1𝑚

2
2ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1𝑚

2
2ℎ

2𝑏2 + 𝑚2
1𝑚

2
2𝛿

2 + ℎ2𝑚2
2𝛿

2 + ℎ2𝑚2
1𝛿

2.

Based on this result, we get the equilibrium price in period 1 as presented in the following theorem.

Theorem 2. Under the market clearing condition �̃�𝑡𝑜𝑡𝑎𝑙 =
∑

𝑑1𝑖, as the number of traders in the market goes to infinity, the equilibrium
price of the risky asset in period 1 will converge to:

�̃�1 =
𝑚2
1𝛿

2𝑢 + 𝑚2
1ℎ

2𝑏𝑧
𝑘1

+ ℎ2𝛿2

𝑘1
�̃�1 +

(ℎ2𝑚2
1𝛿

2𝑏 + ℎ2𝑚2
1𝑏

2)
𝑘1

�̃�

−
(ℎ2𝑚2

1𝛿
2 + ℎ2𝑚2

1𝑏) �̃�. (13)
6
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Noting that equilibrium (5) and (13) are identical, we can have:

𝜋0 =
𝑚2
1𝛿

2𝑢 + 𝑚2
1ℎ

2𝑏𝑧
𝑘1

,

𝜋1 =
ℎ2𝛿2

𝑘1
,

∑

𝛽𝑖 =
ℎ2𝑚2

1𝛿
2𝑏 + ℎ2𝑚2

1𝑏
2

𝑘1
,

𝛾1 = −
ℎ2𝑚2

1𝛿
2 + ℎ2𝑚2

1𝑏
𝑘1

.

Remarkably, the proposed model is more general compared to the previous works in Kim and Verrecchia (1991) and Ozsoylev
nd Walden (2011). We can demonstrate that their models are special cases of ours. See appendix 𝐷 for details.

4.4. Analysis of coefficients of equilibrium prices

According to Theorems 1 and 2, network connectedness plays different roles for different types of signals. Note that �̃� can be
entirely substituted by the private information update via communication. Therefore, the coefficient of �̃� reflects how the network
affects the price discovery process of private information. Contrastly, the coefficients of �̃�1 and �̃�2 reflect how the network affects
the price discovery process of public information. The information communication among network increases the weight of private
information while decreasing the weight of public information during the price discovery process. Moreover, 𝑏 exists in both the
molecular and denominator side of the coefficients of �̃�, meaning the network has two effects in the price discovery process of
private information. The molecular side exhibits the direct effect of the information network. In more detail, due to information
communication among network, the overall precision of private information will increase and hence result in a large weight of
private information. The denominator side exhibits an indirect effect that reflects the relative importance of different kinds of
information. Note that 𝑏 only exists in the denominator side of the coefficients of �̃�1 and �̃�2, which means the network will decrease
the relative importance of public information, resulting in the negative relationship between 𝜋′

1, 𝜋
′
2 and 𝑏.

Note that �̃�1 contains all information (�̃�1, �̃�1,. . . , �̃�𝑛, �̃�) in period 1 and �̃�2 contains all information (�̃�1, �̃�2, �̃�1,. . . , �̃�𝑛, �̃�) in period
2. We can write �̃�2 as (see Appendix 𝐷):

�̃�2 = 𝛼∗�̃�1 + (1 − 𝛼∗)�̃�2

=
(𝑏 + ℎ−2 + 𝑚−2

1 + 𝑏2𝛿−2)�̃�1 + 𝑚−2
2 �̃�2

𝑏 + ℎ−2 + 𝑚−2
1 + 𝑏2𝛿−2 + 𝑚−2

2

.

This can be seen as an average weighted function of old information and new information �̃�2. The coefficient 𝑏 + ℎ−2 +𝑚−2
1 + 𝑏2𝛿−2

can be regarded as the precision of �̃�1 and 𝑚−2
2 is the precision of �̃�2.6 The equilibrium price in period 2 maintains the same linear

structure and scalar as in period 1. The result also verifies the assumption that the network structure is stable across the two periods.
Recall that in the previous section, we analyzed the meaning of the coefficients of the equilibrium price. To better understand the

micro mechanism behind equilibrium price, we further analyzed the behavior of investors. Take period 2 as an example, investor 𝑖’s
osterior assessment about the value of risky asset can be expressed as 𝐸[�̃�|�̃�1, �̃�2, �̃�𝑖, 𝑞] = 𝛼0𝑖 + 𝛼1𝑖�̃�1 + 𝛼2𝑖�̃�2 + 𝛼3𝑖�̃�𝑖 + 𝛼4𝑖𝑞, where the

coefficients 𝛼1𝑖, 𝛼2𝑖, 𝛼3𝑖 and 𝛼4𝑖 can be view as the weights that an investor puts on the corresponding information when they trade.
Combine with the concrete expressions in Appendices A and B, we easily have that 𝑑𝛼2𝑖

𝑑𝑏 < 0 and 𝑑𝛼4𝑖
𝑑𝑏 > 0. With the increase in network

onnectedness, the investor will put less weight on public information and more on other kinds of information. This indicates that
rivate information is more important than public information. Private information will crowd out public information in the trading
rocess. Such a crowding-out effect might lead to the under-reaction of public information in the pricing process.

. Market reaction

This section discusses price change, trading volume, and their reaction to network attributes in the large-economy equilibrium
haracterized by Theorems 1 and 2.

.1. Price change

roposition 1. Under the large-economy equilibrium characterized by Theorems 1 and 2, the price change is:

�̃�2 − �̃�1 =
ℎ2𝑚2

1𝛿
2

𝑘1𝑘2
[𝑚2

1𝛿
2(�̃� − 𝑢) − ℎ2𝛿2𝜖 − 𝑚2

1ℎ
2𝑏𝑧 + 𝑘1�̃�

+ (ℎ2𝑚2
1𝛿

2 + ℎ2𝑚2
1𝑏)�̃�]. (14)

6 The 𝑚−2
2 is the precision of error terms. All information in this paper is constituted by the same �̃� plus different error terms. We can use the precision of
7

rror terms to represent information precision.
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Based on Proposition 1, we immediately get the expected price change as:

𝐸|�̃�2 − �̃�1| =
(ℎ2𝑚2

1𝛿
2)2

𝑘1𝑘2
|𝑧|

=

1
𝑚2
2
|𝑧|

(𝑏 + 𝑏2
𝛿2

+ 1
ℎ2

+ 1
𝑚2
1
)(𝑏 + 𝑏2

𝛿2
+ 1

ℎ2
+ 1

𝑚2
1
+ 1

𝑚2
2
)
. (15)

We have the following corollaries according to Eq. (15).

Corollary 5.1. The expected price change is negatively and convexly correlated with the precision of asset supply (𝛿−2), and the information
precision of initial asset payoff and old public information (ℎ−2 and 𝑚−2

1 ). The expected price change is positively and concavely correlated
with the information precision of new public disclosure (𝑚−2

2 ). That is, we always have:

𝜕𝐸(|�̃�2 − �̃�1|)
𝜕ℎ−2

< 0,
𝜕𝐸(|�̃�2 − �̃�1|)

𝜕𝑚−2
1

< 0,

𝜕𝐸(|�̃�2 − �̃�1|)
𝜕𝛿−2

< 0,
𝜕𝐸(|�̃�2 − �̃�1|)

𝜕𝑚−2
2

> 0,

𝜕2𝐸(|�̃�2 − �̃�1|)
𝜕(ℎ−2)2

> 0,
𝜕2𝐸(|�̃�2 − �̃�1|)

𝜕(𝑚−2
1 )2

> 0,

𝜕2𝐸(|�̃�2 − �̃�1|)
𝜕(𝛿−2)2

> 0,
𝜕2𝐸(|�̃�2 − �̃�1|)

𝜕(𝑚−2
2 )2

< 0.

The results of Corollary 5.1 are intuitive. First, as the precision of disclosure increases, the price change increases. This is because
new information helps traders update their beliefs more accurately. However, the speed of this change declines since the precision of
the disclosure may not be the most critical factor in deciding the price change when it reaches some level. Some other variables, such
as noise, may dominate the price change. Second, except for the precision of disclosure, all other information precisions negatively
correlate with the price change and trading volume. This is because all the information is consistent in the two periods. As the
information precision increases, the relative importance of public disclosure decreases. Traders will make a few revisions to their
beliefs when facing an emerging disclosure. From the second derivative, we can see that the marginal change of this information
is monotonically increasing. Holthausen and Verrecchia (1988) showed a similar property for price change in a two-period rational
expectation model.

Corollary 5.2. The expected price change is negatively correlated with the network connectedness (𝑏), while it does not correlate with the
network uniformity (𝑢).

𝜕𝐸(|�̃�2 − �̃�1|)
𝜕𝑏

< 0, (16)

𝜕𝐸(|�̃�2 − �̃�1|)
𝜕𝑢

= 0. (17)

Corollary 5.2 is an exciting result. Recall that we decompose �̃�2 into �̃�2 = 𝛼∗�̃�1 + (1 − 𝛼∗)�̃�2, where 𝛼∗ represents old information
recision weights and (1-𝛼∗) represents precision weights of new information. The absolute price change is related to newly published
nformation. However, the degree of change depends on the relative precision between old and new information. As we know,
ld information contains private information affected by network structures. Therefore, as network connectedness increases, the
elative precision of old information increases. This means �̃�2 is closer to �̃�1, leading to a negative relationship between network
onnectedness and price change. The price change reflects the average belief change among the market, i.e., it is an aggregate level
ariable. Thus, it does not correlate with network uniformity.

The negative relationship between the price change and network connectedness also provides a theoretical interpretation of the
nder-reaction of public disclosure in the market. During the trading process, investors decide how much weight they should put on
ifferent information. The more connectedness the network strengthens, the more critical private information is. This motivates
nvestors to put more weight on private information rather than public disclosure, which reflects the under-reaction of public
isclosure at the aggregate level.

.2. Trading volume

Based on Kim and Verrecchia (1991)’s definition, we define the trading volume of trader 𝑖 on the risky asset as (𝑠2𝑖 =
𝑠2

[𝐖]𝑖𝑖
):

𝑑2𝑖 − 𝑑1𝑖 = −(𝑠−2𝑖 − 𝑏)(�̃�2 − �̃�1). (18)

hen we have the following proposition,
8
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Proposition 2. Under the large-economy equilibrium characterized by Theorems 1 and 2, the total trading volume can be expressed as a
summation such as 1

2
∑

|𝑑2𝑖 − 𝑑1𝑖|, i.e.:

𝑉 𝑜𝑙𝑢𝑚𝑒 = 𝐸[ 1
2
∑

|(𝑠−2𝑖 − 𝑏) ∥ (�̃�2 − �̃�1)|], (19)

= 1
2

𝑚−2
2 𝑠−2𝑧𝑛𝑢

(𝑏 + 𝑏2𝛿−2 + ℎ−2 + 𝑚−2
1 )(𝑏 + 𝑏2𝛿−2 + ℎ−2 + 𝑚−2

1 + 𝑚−2
2 )

. (20)

Eq. (19) gives a quantitative relationship between price and trading volume, which is consistent with Jain (1988)’s conclusion.

Corollary 5.3. The relationship between trading volume and information precision is the same as price change.

This corollary is obvious. Since Eq. (19) contains price change and remaining terms 𝑠−2𝑖 , 𝑏 are independent with other information
precisions, e.g. 𝑚−2

1 , 𝑚−2
2 . So, the logic behind the price change also holds in the case of the trading volume. However, the terms

|𝑠−2𝑖 − 𝑏| cause a different reaction of trading volumes with the network.

Corollary 5.4. The trading volume is negatively correlated with network connectedness (𝑏) while positively correlated with the network
uniformity variable (𝑢).

𝜕𝑉 𝑜𝑙𝑢𝑚𝑒
𝜕𝑏

< 0, 𝜕𝑉 𝑜𝑙𝑢𝑚𝑒
𝜕𝑢

> 0.

The effect of network connectedness on trading volume is the same as on price change. It is a natural result because trading
olume is positively correlated with the price change, as in Eq. (19). However, unlike the price change, network uniformity also
ffects trading volume (𝑢). When network connectedness (𝑏) is fixed, we can see that trading volume positively correlates with
etwork uniformity (𝑢). Recall the definition of network uniformity (𝑢), a bigger 𝑢 suggests a less uniform network. Consequently, a

bigger 𝑢 indicates a more diverse information structure and hence more disagreement among traders, which can facilitate trading.

6. Market quality

In this section, we discuss how market quality is affected by network attributes. Market quality refers to a market’s ability to meet
its dual goals of liquidity and price discovery (Hara and Ye, 2011). We use three common measures to gauge market quality. The
first one is market liquidity which characterizes the market’s ability to facilitate the purchase or sale of an asset without drastically
affecting the asset’s price (Goldstein and Yang, 2017). We use market depth to measure liquidity which is in the same spirit of theory
literature as Kyle (1985) and Han et al. (2016). Some empirical research also uses market depth as a proxy variable of liquidity.
(e.g.: Ding et al., 2017). The second one is price efficiency, also called market efficiency, which is how informative the prevailing
market prices are about the future values of risky assets. In literature (e.g., Vives, 2008; Ozsoylev and Walden, 2011), researchers
measure price efficiency by the precision of posterior about fundamental value conditional on its price. The third one is the cost
of capital. The expected return 𝐸(�̃� − �̃�) is often interpreted as the cost of capital on the risky asset (e.g: Easley and Hara, 2004;
ambert et al., 2007), which reflects the uncertainty between prices �̃� and fundamental value �̃�.

Based on the above literature, we define price efficiency (eff1, eff2), market liquidity (liq1, liq2) and cost of capital (cost1, cost2)
for each period as follows:

eff1 =
1

𝑉 𝑎𝑟(�̃�|�̃�1)
= ℎ−2 +

(𝑚−2
1 + 𝑏2𝛿−2 + 𝑏)2

𝑚−2
1 + 𝑏2𝛿−2 + 2𝑏 + 𝛿2

, (21)

eff2 =
1

𝑉 𝑎𝑟(�̃�|�̃�2)
= ℎ−2 +

(𝑚−2
1 + 𝑚−2

2 + 𝑏2𝛿−2 + 𝑏)2

𝑚−2
1 + 𝑚−2

2 + 𝑏2𝛿−2 + 2𝑏 + 𝛿2
, (22)

liq1 =
1
𝛾1

= 𝑏 +
ℎ−2 + 𝑚−2

1

1 + 𝑏𝛿−2
, (23)

liq2 =
1
𝛾2

= 𝑏 +
ℎ−2 + 𝑚−2

1 + 𝑚−2
2

1 + 𝑏𝛿−2
, (24)

cost1 = 𝐸(�̃� − �̃�1) =
𝑧

𝑚−2
1 + ℎ−2 + 𝑏2𝛿−2 + 𝑏

, (25)

cost2 = 𝐸(�̃� − �̃�2) =
𝑧

𝑚−2
1 + 𝑚−2

2 + ℎ−2 + 𝑏2𝛿−2 + 𝑏
. (26)

First, we analyze the price efficiency from the perspective of noisy trading. Recall that we have 𝑞 = 𝑞1 ≡ 𝑞2. Han et al. (2016)
use 𝜌 (inverse of the variance of 𝑞− �̃�) to capture the degree of extra information that the price conveys in addition to the public and
private information. If the conjecture is right, then the price informativeness should be the same in the two periods. In our model,
we have 𝜌𝑞1 = 𝜌𝑞2 = 𝑏−2𝛿2, which means that with the increase of connectedness, the price contains less noisy information. An
xtreme case of this conclusion is that connectedness goes to infinity. This indicates there is no private information in the market,
9

nd then all trade will be conducted by noisy traders. In this case, the price is uninformative.
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Corollary 6.1. The price efficiency is positively correlated with the information precision of public information (𝑚−2
1 and 𝑚−2

2 ) and the
etwork connectedness (𝑏).

𝜕 eff1
𝜕 𝑚−2

1

> 0,
𝜕 eff2
𝜕 𝑚−2

2

> 0,

𝜕 eff1
𝜕 𝑏

> 0,
𝜕 eff2
𝜕 𝑏

> 0.

From Corollary 6.1, we know the price efficiency increases if it has more precision from public information. This is because
he precision of public information indicates an informative price, which means better price efficiency. With (21) and (22), we can
asily obtain the change of price efficiency at the arrival of public disclosure.

𝛥eff = eff2 − eff1 > 0. (27)

It is easy to show that the sign of expression 𝛥eff is always positive. This indicates that public disclosure increases price efficiency,
which is consistent with Goldstein and Yang (2017). However, other models predict the opposite effect, i.e., public disclosure harms
the price efficiency (e.g., Diamond, 1985; Gao and Liang, 2013) while information acquisition is endogenous. In our model, the
information is exogenous; thus, public disclosure always improves price efficiency.

Corollary 6.2. The market liquidity is positively correlated with the information precision of public information (𝑚−2
1 and 𝑚−2

2 ), and has
non-monotone correlation with network connectedness (𝑏). It is positively correlated with the network connectedness (𝑏) when the public
nformation precision (𝑚−2

1 and 𝑚−2
2 ) is at a low level, and it is negatively correlated with the network connectedness (𝑏) when the public

nformation precision (𝑚−2
1 and 𝑚−2

2 ) is at a high level.

𝜕 liq1
𝜕 information precision > 0,

𝜕 liq2
𝜕 information precision > 0,

𝜕 liq1
𝜕 𝑏

⎧

⎪

⎨

⎪

⎩

> 0, 𝑖𝑓 𝑏 >
√

𝛿2ℎ−2 + 𝛿2𝑚−2
1 − 𝛿2,

< 0, 𝑖𝑓 𝑏 <
√

𝛿2ℎ−2 + 𝛿2𝑚−2
1 − 𝛿2,

𝜕 liq2
𝜕 𝑏

⎧

⎪

⎨

⎪

⎩

> 0, 𝑖𝑓 𝑏 >
√

𝛿2ℎ−2 + 𝛿2𝑚−2
1 + 𝛿2𝑚−2

2 − 𝛿2,

< 0, 𝑖𝑓 𝑏 <
√

𝛿2ℎ−2 + 𝛿2𝑚−2
1 + 𝛿2𝑚−2

2 − 𝛿2.

This result is obvious because more precise information (𝑚−2
1 , 𝑚−2

2 ) usually implies less uncertainty about the asset. As a result,
hanges in liquidity trading are absorbed with a minor price change. By Eq. (23), we have

𝜕liq1
𝜕𝑏

= 1 −
𝛿−2(ℎ−2 + 𝑚−2

1 )

(1 + 𝑏𝛿−2)2
.

If 𝑏 >
√

𝛿2ℎ−2 + 𝛿2𝑚−2
1 −𝛿2, market liquidity increases as the network connectedness increases, otherwise it will decline. Note that the

right side of the inequation contains public information precision. When public information precision is at a low level, the market
is dominated by private information. The result is consistent with the no public information model of Han and Yang (2013); when
it is at a high level, the market is dominated by public information, and it may reverse to inhibition of the role of the network.

From Eqs. (23) and (24), it is easy to show that:

𝛥liq = liq2 − liq1 =
𝑚−2
2

1 + 𝑏𝛿−2
> 0. (28)

Based on this formula, we have the following corollary.

Corollary 6.3. The liquidity change (𝛥liq) is positively correlated with the public disclosure’s precision (𝑚−2
2 ) and negatively correlated

with the network connectedness (𝑏). Their second cross derivative is smaller than 0.

𝜕 𝛥liq
𝜕 𝑚−2

2

> 0,
𝜕 𝛥liq
𝜕 𝑏

< 0,
𝜕2 𝛥liq
𝜕 𝑚−2

2 𝜕 𝑏
< 0.

On the one hand, the result of Eq. (28) shows that public disclosure can improve market liquidity, and it is consistent
with Diamond and Verrecchia (1991). On the other hand, the liquidity change tends to decline as network connectedness increases.
This is because the network can only directly affect private information, thus decreasing the liquidity change caused by public
information. An extreme case is when network connectedness goes to infinity, all private information in the market is completely
transferred to public information, and noisy traders produce all trading. We can also explain this phenomenon using the crowding-
out effect. Verrecchia (1982), Diamond (1985), and Han et al. (2016) stated that the disclosure crowds out the product of
private information. In our model, agents can share information with their neighbors in the embedded network. The higher the
10
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Fig. 1. Numerical Simulation.

connectedness of the network, the more information they get. This reduces the willingness of agents to acquire private information.
The negative second cross derivative reflects that public disclosure and the network suppresses mutually in affecting liquidity change.
The reason is their contradictory mechanism. Public disclosure (�̃�2) affects the market via the public information channel, while the
network affects the market via the private information channel. In the NREE model, it is just the trade-off of the two channels to
decide the market equilibrium.

Corollary 6.4. The cost of capital is negatively correlated with the information precision (𝑚−2
1 and 𝑚−2

2 ) and the network connectedness
(𝑏).

𝜕 cost1
𝜕 𝑚−2

1

< 0,
𝜕 cost2
𝜕 𝑚−2

2

< 0,

𝜕 cost1
𝜕 𝑏

< 0,
𝜕 cost2
𝜕 𝑏

< 0.

The cost of capital measures the uncertainty between asset price �̃� and fundamental value �̃�. A larger 𝑚−2
1 means more public

information, and a larger 𝑏 indicates more advantage in private information. More information reduces uncertainty about the gaps.
11
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Corollary 6.5. The absolute value of the cost of capital change (|𝛥cost|) is positively correlated with the public disclosure’s precision (𝑚−2
2 )

nd negatively correlated with the network connectedness (𝑏). Their second cross derivative is smaller than 0.
𝜕 |𝛥 𝑐𝑜𝑠𝑡|
𝜕 𝑚−2

2

> 0,
𝜕 |𝛥 𝑐𝑜𝑠𝑡|

𝜕 𝑏
< 0,

𝜕2 |𝛥 𝑐𝑜𝑠𝑡|
𝜕 𝑚−2

2 𝜕 𝑏
< 0.

By straightforward calculation, we have the change in the cost of capital:

𝛥𝑐𝑜𝑠𝑡 = 𝑧
𝑚−2
1 + 𝑚−2

2 + ℎ−2 + 𝑏2𝛿−2 + 𝑏
− 𝑧

𝑚−2
1 + ℎ−2 + 𝑏2𝛿−2 + 𝑏

< 0. (29)

rom Eq. (29), we know that the cost of capital declines if disclosure occurs. The reason is the same as given in Corollary 6.4. A
arge network connectedness leads to smaller |𝛥𝑐𝑜𝑠𝑡|. More network connectedness means a comparatively less important disclosure,
o it suppresses the uncertainty reduction function of disclosure.

Following Goldstein and Yang (2019), we use Fig. 1 to numerically examine the implication of networks in the economy. Without
oss of generality, we assume that 𝑚−2

1 = ℎ−2 = 𝛿−2 = 0.2. By noting that the precision of disclosure is commonly higher than pre-
isclosure, we thus assume 𝑚−2

2 = 0.5. We plot three variables about market quality against network connectedness. The results of
umerical examinations are consistent with Corollary 6.1 to 6.5. Figures (𝑎1) and (𝑎2) indicate that price efficiency is positively
elated to network connectedness, and Figure (𝑎3) indicates that public information disclosure can enhance price efficiency. Note
hat in our simulation settings, 𝑏 is always larger than

√

𝛿2ℎ−2 + 𝛿2𝑚−2
1 − 𝛿2. Thus, Figures (𝑏1) and (𝑏2) show that liquidity is also

positively related to network connectedness. Figure (𝑏3) shows that public information disclosure always enhances market liquidity,
while the magnitude of liquidity enhancement is negatively related to network connectedness. Similarly, Figures (𝑐1) and (𝑐2) reflect
he relationship between network connectedness and cost of capital. That is, a higher network connectedness will contribute to a
ower cost of capital. Figure (𝑐3) shows that network connectedness will reduce the magnitude of the cost of capital reduction.
ecall that cost of capital is a contrarian indicator of market quality. Thus, Fig. 1 shows that both network connectedness and
ublic disclosure can improve market quality, but network connectedness crowd-outs the market quality improvement caused by
ublic disclosure.

. Conclusion

We study the role of the information network in price discovery via an NREE model. Our theoretical analysis shows that the
nformation network facilitates the price integration of private information by improving information precision and correlations of
arious information. At the same time, the information network indirectly influences the price integration of public information by
assively adjusting investors’ decision weight on public information. Further, we pay particular attention to two network structure
easures, network connectedness and network uniformity. We show that the price change is only affected by network connectedness.
he greater the network connectedness is, the smaller the price change will be. However, the trading volume is affected by both
onnectedness and uniformity. The greater the uniformity is, the greater the trading volume will be. Finally, we show that the
arginal effect of public disclosure on market quality is suppressed by network connectedness. A numerical study further verifies

he conclusion that information networks can decrease the market quality changes caused by public disclosure. Our research
uggests that information network and public disclosure helps to improve market quality. However, due to the complementary
elationship between the information network and public disclosure in price discovery, the information network will crowd out
ublic information in investors’ decision process.
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ppendix

To facilitate the proof, we decompose the covariance matrix S into column vectors 𝐒 = [𝐬1,… , 𝐬𝑛], and we define the scalars
𝑠2𝑖 = [𝐒]𝑖𝑖 =

𝑠2

[𝐖]𝑖𝑖
.

ppendix A. The proof of Theorem 1

roof. According the model setting, the joint distribution of (�̃�, �̃�1, �̃�2, �̃�𝑖, 𝑞) in period 2 is a multivariate normal distribution with
ean [𝑢, 𝑢, 𝑢, 𝑢, 𝑢 + 𝑛𝑐𝑧] and covariance matrix (where 𝜷 is a column vector [𝛽′1, 𝛽

′
2, 𝛽

′
𝑛])

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

ℎ2 ℎ2 ℎ2 ℎ2 ℎ2

ℎ2 ℎ2 + 𝑚2
1 ℎ2 ℎ2 ℎ2

ℎ2 ℎ2 ℎ2 + 𝑚2
2 ℎ2 ℎ2

ℎ2 ℎ2 ℎ2 ℎ2 + 𝑠2

[𝐖]𝑖𝑖
ℎ2 + 𝜷𝑇 𝐬𝑖

𝟏𝑇 𝜷

ℎ2 ℎ2 ℎ2 ℎ2 + 𝜷𝑇 𝐬𝑖 ℎ2 + 𝜷𝑇 𝐒𝜷 + 𝑛2𝑐2𝛿2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

12

⎣ 𝟏𝑇 𝜷 (𝟏𝑇 𝜷)2 ⎦
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Then by projection theorem, we have that

𝐸(�̃�|�̃�1, �̃�2, �̃�𝑖, �̃�1, �̃�2) = 𝐸(�̃�|�̃�1, �̃�2, �̃�𝑖, 𝑞) (30)
= 𝛼0𝑖 + 𝛼1𝑖�̃�1 + 𝛼2𝑖�̃�2 + 𝛼3𝑖�̃�𝑖 + 𝛼4𝑖𝑞,

𝐷(�̃�|�̃�1, �̃�2, �̃�𝑖, �̃�1, �̃�2) = 𝛽∗𝑖 , (31)

where

𝛼0𝑖 =
𝑚2
1𝑚

2
2𝑢

𝑏𝑖

⎡

⎢

⎢

⎣

(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2
)

𝑠2𝑖 −

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2
⎤

⎥

⎥

⎦

+
𝑚2
1𝑚

2
2ℎ

2

𝑏𝑖

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

− 𝑠2𝑖

)

𝑛𝑐𝑧, (32)

𝛼1𝑖 =
ℎ2𝑚2

2
𝑏𝑖

⎡

⎢

⎢

⎣

(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2
)

𝑠2𝑖 −

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2
⎤

⎥

⎥

⎦

, (33)

𝛼2𝑖 =
ℎ2𝑚2

1
𝑏𝑖

⎡

⎢

⎢

⎣

(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2
)

𝑠2𝑖 −

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2
⎤

⎥

⎥

⎦

, (34)

𝛼3𝑖 =
ℎ2𝑚2

1𝑚
2
2

𝑏𝑖

[

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2 −
𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

]

, (35)

𝛼4𝑖 =
ℎ2𝑚2

1𝑚
2
2

𝑏𝑖

[

𝑠2𝑖 −
𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

]

, (36)

𝛽∗𝑖 =
ℎ2𝑚2

1𝑚
2
2

𝑏𝑖

⎡

⎢

⎢

⎣

(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2
)

𝑠2𝑖 −

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2
⎤

⎥

⎥

⎦

, (37)

𝑏𝑖 = 𝑚2
1𝑚

2
2[(ℎ

2 + 𝑠2𝑖 )(ℎ
2 +

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2) − (
𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

+ ℎ2)2]

+ (𝑚2
1 + 𝑚2

2)ℎ
2[(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2

+ 𝑛2𝑐2𝛿2)𝑠2𝑖 − (
𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2]. (38)

By taking Eqs. (30) and (31) into Eq. (9) and combining with the market clearing condition, we can get

⎛

⎜

⎜

⎜

⎝

∑

𝛼0𝑖 − 𝛼4𝑖
𝜋′0

𝑘𝟏𝑇 𝜷

𝛽∗𝑖

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

∑

𝛼1𝑖 − 𝛼4𝑖
𝜋′1

𝑘𝟏𝑇 𝜷

𝛽∗𝑖

⎞

⎟

⎟

⎟

⎠

�̃�1 +

⎛

⎜

⎜

⎜

⎝

∑

𝛼2𝑖 − 𝛼4𝑖
𝜋′1

𝑘𝟏𝑇 𝜷

𝛽∗𝑖

⎞

⎟

⎟

⎟

⎠

�̃�2

+
∑ 𝛼3𝑖�̃�𝑖

𝛽∗𝑖
+
⎛

⎜

⎜

⎝

∑

𝛼4𝑖
𝑘𝟏𝑇 𝜷 − 1

𝛽∗𝑖

⎞

⎟

⎟

⎠

�̃�2 = 𝑛�̃�. (39)

In Eq. (39), we define
(

∑

1− 𝛼4𝑖
𝑘𝟏𝑇 𝜷
𝛽∗𝑖

)−1

= 𝛾. Then we can solve out the coefficients as:

𝜋′
0 =

∑ 𝛼0𝑖
𝛽∗𝑖

1
𝛾 +

∑ 𝛼4𝑖
𝛽∗𝑖

𝑘𝟏𝑇 𝜷

, (40)

𝜋′
1 =

∑ 𝛼1𝑖
𝛽∗𝑖

1
𝛾 +

∑ 𝛼4𝑖
𝛽∗𝑖

𝑘𝟏𝑇 𝜷

, (41)

𝜋′
2 =

∑ 𝛼2𝑖
𝛽∗𝑖

1
𝛾 +

∑ 𝛼4𝑖
𝛽∗𝑖

𝑘𝟏𝑇 𝜷

, (42)

𝛽′𝑖 = 𝛾
(

𝛼3𝑖
𝛽∗𝑖

)

, (43)

𝛾∗ = 𝑛𝛾. (44)
13
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D

m

We further take Eqs. (35), (37) and (38) into Eq. (43) and get

𝛽′𝑖 = 𝛾
𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2 + 𝑛2𝑐2𝛿2 − 𝜷𝑇 𝐬𝑖

𝟏𝑇 𝜷

( 𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2 + 𝑛2𝑐2𝛿2)𝑠2𝑖 − ( 𝜷

𝑇 𝐬𝑖
𝟏𝑇 𝜷 )

2
(45)

Define [𝐪]𝑖 =
𝛽′𝑖
𝛾 , Eq. (45) can be simplified as

[𝐪]𝑖 =
1
𝑠2𝑖

𝐪𝑇 𝐒𝐪 + 𝑛2𝛿2 − 𝐪𝑇 𝐬𝑖𝟏𝑇 𝐪

𝐪𝑇 𝐒𝐪 + 𝑛2𝛿2 −
(𝐪𝑇 𝐬𝑖)2

𝑠2𝑖

(46)

efine 𝐲 = 𝑠2𝐃−1𝐪 and the vector 𝐝 with [𝐝]𝑖 = [𝐃]𝑖𝑖, we can transform the above formula as

[𝐲]𝑖 =
𝐲𝑇𝐖𝐲 + 𝑛2𝛿2𝑠2 − (𝐝𝑇 𝐲)[𝐝]−1𝑖 [𝐖𝐲]𝑖

𝐲𝑇𝐖𝐲 + 𝑛2𝛿2𝑠2 − [𝐖𝐲]2𝑖
, (47)

[𝐹 (𝐲)]𝑖 = 1 +

[𝐖𝐲]2𝑖
𝑛2

−
(𝐝𝑇 𝐲[𝐝]−1𝑖 [𝐖𝐲]𝑖)

𝑛2

(𝐲𝑇𝐖𝐲)
𝑛2

+ 𝛿2𝑠2 −
[𝐖𝐲]2𝑖
𝑛2

. (48)

By making use of the same techniques as in Ozsoylev and Walden (2011), for any 𝜖 > 0 with enough large 𝑛, we have

𝐲 ∈ R𝑛, ‖𝐲‖∞ <= 2;
⇓

|[𝐹 (𝐲)]𝑖 − 1| <= 𝜖𝛿𝑠2 + 𝜖𝛿𝑠2

−𝜖𝛿𝑠2 + 𝛿𝑠2 − 𝜖𝛿𝑠2
. (49)

The Eq. (49) implies that there exists a continuous mapping 𝐹𝑛 ∶ [0, 2]𝑛 → [1 − 4𝜖, 1 + 4𝜖]𝑛, then correspondingly a continuous
apping 𝐹𝑛 ∶ [1 − 4𝜖, 1 + 4𝜖]𝑛 → [1 − 4𝜖, 1 + 4𝜖]𝑛. According to the fixed-point theorem, it suggests that there exists some constant

𝐲 ∈ [1 − 4𝜖, 1 + 4𝜖]𝑛 such that:

lim
𝑛→∞

‖𝐲𝑛 − 𝟏𝑛‖∞ = 0. (50)

Define 𝐲 = 𝑠2𝐃−1𝐪, then the equations about 𝐪 can be re-expressed as

lim
𝑛→∞

𝟏𝑇𝑛 𝐪𝑛
𝑛

= lim
𝑛→∞

∑

[𝐖]𝑖𝑖[𝐲]𝑖
𝑠2𝑛

= 𝑏, (51)

lim
𝑛→∞

𝐬𝑇𝑖 𝐪
𝑛

= 0, (52)

lim
𝑛→∞

𝐪𝑇 𝐒𝐪
𝑛2

= 0. (53)

As a result, we can further express 𝛾 as a function of 𝐪

1
𝛾
=
∑

1 −
𝛼4𝑖

𝑘𝟏𝑇 𝜷
𝛽∗𝑖

=
∑

1 +
ℎ2𝑚2

1𝑚
2
2

𝑏𝑖

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

−𝑠2𝑖

)

𝑘𝟏𝑇 𝜷

ℎ2𝑚2
1𝑚

2
2

𝑏𝑖

[

(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2 + 𝑛2𝛾2𝛿2

𝑘2(𝟏𝑇 𝜷)2

)

𝑠2𝑖 −
(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2]

=
∑

𝑏𝑖 + ℎ2𝑚2
1𝑚

2
2

(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

−𝑠2𝑖

)

𝑘𝟏𝑇 𝜷

ℎ2𝑚2
1𝑚

2
2

[

(

𝜷𝑇 𝐒𝜷
(𝟏𝑇 𝜷)2 + 𝑛2𝛾2𝛿2

𝑘2(𝟏𝑇 𝜷)2

)

𝑠2𝑖 −
(

𝜷𝑇 𝐬𝑖
𝟏𝑇 𝜷

)2]
(54)

=
∑

(

𝟏𝑇 𝐪 − 𝐪𝑇 𝐬𝑖
𝑠2𝑖

)2
− 1

𝛾

(

𝟏𝑇 𝐪 − 𝐪𝑇 𝐬𝑖
𝑠2𝑖

)

𝐪𝑇 𝐒𝐪 + 𝑛2𝛿2 − (𝐪𝑇 𝐬𝑖)2

𝑠2𝑖

+
∑ ℎ2 + 𝑠2𝑖

ℎ2𝑠2𝑖
+
∑ 𝑚2 + 𝑛2

𝑚2𝑛2
.

Solving the equation above, we have

𝛾 =

1 +
∑

𝐪𝑇 𝟏− 𝐪𝑇 𝐬𝑖
𝑠2𝑖

𝐪𝑇 𝐒𝐪+𝑚2
2𝛿

2− (𝐪𝑇 𝐬𝑖 )2

𝑠2𝑖

∑ ℎ2+𝑠2𝑖
ℎ2𝑠2𝑖

+
∑ 𝑚2

1+𝑚
2
2

𝑚2
1𝑚

2
2

+
∑

(

𝟏𝑇 𝐪 − 𝐪𝑇 𝐬𝑖
𝑠2𝑖

)2

𝐪𝑇 𝐒𝐪 + 𝑚2𝛿2 − (𝐪𝑇 𝐬𝑖)2

. (55)
14
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Taking Eqs. (51), (52) and (53) into (55) and multiplying it by 𝑛, we can solve 𝛾∗ as

lim
𝑛→∞

𝛾∗ = lim
𝑛→∞

𝑛𝛾 = lim
𝑛→∞

𝑛
1 + 𝑛 𝑏𝑛−0

0+𝑛2𝛿2−0

𝑛( 1
ℎ2

+ 𝑏 + 1
𝑚2
1
+ 1

𝑚2
2
+ (𝑛𝑏)2

𝑛2𝛿2
)

=
1 + 𝑏

𝛿2

1
ℎ2

+ 𝑏 + 1
𝑚2
1
+ 1

𝑚2
2
+ 𝑏2

𝛿2

=
ℎ2𝑚2

1𝑚
2
2𝛿

2 + ℎ2𝑚2
1𝑚

2
2𝑏

ℎ2𝑚2
1𝑚

2
2𝛿

2𝑏 + 𝑚2
1𝑚

2
2𝛿

2 + ℎ2𝑚2
2𝛿

2 + ℎ2𝑚2
1𝛿

2 + ℎ2𝑚2
1𝑚

2
2𝑏

2

=
ℎ2𝑚2

1𝑚
2
2𝛿

2 + ℎ2𝑚2
1𝑚

2
2𝑏

𝑘2
. (56)

We further define 𝜋∗′ = lim𝑛→∞ 𝜷𝑇 𝟏 and have

(𝜋∗)′ = 𝛾
∑ 𝐪𝑇 𝐒𝐪 + 𝑛2𝛿2 − (𝐪𝑇 𝐬𝑖)(𝐓′𝐪)

𝐪𝑇 𝐒𝐪 + 𝑛2𝛿2 − (𝐪𝑇 𝐬𝑖)2

𝑠2𝑖

1
𝑠2𝑖

= 𝛾
∑ 𝑛2𝛿2

𝑛2𝛿2
1
𝑠2𝑖

= 𝛾∗
∑ [𝐖]𝑖𝑖

𝑛𝑠2
= 𝛾∗𝑏. (57)

We next show that ∑ 𝛽′𝑖 �̃�𝑖
𝑝
→ 0. We can firstly note that

𝐷(
∑

𝛽′𝑖 𝜂𝑖) = 𝜷𝑇 𝑠2𝐃−1𝐖𝐃−1𝜷

= 𝛾2𝑠2𝐃−1𝐪𝑇𝐖𝐪𝑠2𝐃−1

= (𝛾∗)2
𝐲𝑇𝐖𝐲
𝑛2

= (𝛾∗)2
𝑛𝑜(𝑛)
𝑛2

𝑝
→ 0.

It is easy to show that 𝐸(
∑

𝛽′𝑖 �̃�𝑖) = 0, we can thus have ∑

𝛽′𝑖 �̃�𝑖
𝑝
→ 0. Then in Eq. (41), we can calculate the molecule and the

enominator separately. Further note that ∑ 𝛼1𝑖
𝛽∗𝑖

𝑝
→ 𝑛

𝑚2
1

and 𝛾

∑ 𝛼4𝑖
𝛽∗𝑖

𝑘𝟏𝑇 𝜷
𝑝
→ 𝑏

𝛿2
, we can get 𝜋′

1 as

𝜋′
1

𝑝
→

ℎ2𝑚2
2𝛿

2

𝑘2
. (58)

Similarly, we can also get 𝜋′
2 and 𝜋′

0

𝜋′
2

𝑝
→

ℎ2𝑚2
1𝛿

2

𝑘2
, (59)

𝜋′
0

𝑝
→

𝑚2
1𝑚

2
2𝛿

2𝑢 + 𝑚2
1𝑚

2
2ℎ

2𝑏𝑧
𝑘2

. (60)

This completes the proof of theorem 1. To simplify the proof of Theorem 2, we further calculate the limitation of 𝛼0𝑖, 𝛼1𝑖, 𝛼2𝑖, 𝛼3𝑖
and 𝛼4𝑖

lim
𝑛→∞

𝛼0𝑖 =
𝑚2
1𝑚

2
2𝛿

2𝑢 + ℎ2𝑚2
1𝑚

2
2𝑏𝑧

𝑘2𝑖
, (61)

lim
𝑛→∞

𝛼1𝑖 =
ℎ2𝑚2

2𝛿
2

𝑘2𝑖
, (62)

lim
𝑛→∞

𝛼2𝑖 =
ℎ2𝑚2

1𝛿
2

𝑘2𝑖
, (63)

lim
𝑛→∞

𝛼3𝑖 =
ℎ2𝑚2

1𝑚
2
2𝛿

2 1
𝑠2𝑖

𝑘2𝑖
, (64)

lim
𝑛→∞

𝛼4𝑖 =
ℎ2𝑚2

1𝑚
2
2𝑏

2

𝑘2𝑖
, (65)

lim 𝛽∗ =
ℎ2𝑚2

1𝑚
2
2𝛿

2

, (66)
15
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P
e

W

where 𝑘2𝑖 = 𝑚2
1𝑚

2
2ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1𝑚

2
2ℎ

2𝑏2 + 𝑚2
1𝑚

2
2𝛿

2 + 𝑚2
1ℎ

2𝛿2 + 𝑚2
2ℎ

2𝛿2. □

ppendix B. The proof of Theorem 2

roof. First, by the same methods as used in the proof of Theorem 1, we can get the following results about the conditional
xpectations and conditional variance in period 1

𝐸[�̃�|�̃�1, �̃�𝑖, 𝑞] = �̃�1𝑖 = 𝜃′0𝑖 + 𝜃′1𝑖�̃�1 + 𝜃′2𝑖�̃�𝑖 + 𝜃′3𝑖𝑞 (67)

𝜃′0𝑖 →
𝑢𝑚2

1𝛿
2 + ℎ2𝑚2

1𝑏𝑧

𝑚2
1ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2
, (68)

𝜃′1𝑖 →
ℎ2𝛿2

𝑚2
1ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2
, (69)

𝜃′2𝑖 →
ℎ2𝑚2

1𝛿
2 1
𝑠2𝑖

𝑚2
1ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2
, (70)

𝜃′3𝑖 →
ℎ2𝑚2

1𝑏
2 1
𝑠2𝑖

𝑚2
1ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2
. (71)

To easy the notation, we define the next two expressions

𝑘1𝑖 =𝑚2
1ℎ

2𝛿2 1
𝑠2𝑖

+ 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2,

𝑘1 =𝑚2
1ℎ

2𝛿2𝑏 + 𝑚2
1ℎ

2𝑏2 + 𝑚2
1𝛿

2 + ℎ2𝛿2.

ith these two expressions, we have

𝐷(�̃�|�̃�1, �̃�𝑖, 𝑞) →
ℎ2𝑚2

1𝛿
2

𝑘1𝑖
(72)

In period 1, trader 𝑖’s information set is 𝐼1 = {�̃�1, �̃�𝑖, �̃�1} = {�̃�1, �̃�𝑖, 𝑞}, and traders 𝑖 solves his maximization problem as follows

max
𝑑1𝑖

𝐸
[

𝑈𝑖
(

𝑤𝑖
)

|𝐼1
]

⇓

max
𝑑1𝑖

𝐸
[

−exp{−[𝑒𝑖 + �̃�1𝑧𝑖 + (�̃�2 − �̃�1)𝑑1𝑖 + (�̃� − �̃�2)𝑑2𝑖]}|𝐼1
]

(73)

To simplify the notations, we let 𝐼∗ = {�̃�1, �̃�𝑖, 𝑞, �̃�2, �̃�2𝑖}. By omitting the terms unrelated to 𝑑1𝑖 and applying the law of iterated
expectations for Eq. (73), Eq. (73) can be written as

𝐸�̃�2 ,�̃�2𝑖 ,�̃�
[

−exp
{

(�̃�1 − 𝑃2)𝑑1𝑖 − (�̃� − �̃�2)𝑑2𝑖
}

|𝐼1
]

= 𝐸�̃�2 ,�̃�2𝑖

[

𝐸�̃�
[

−exp
{

(�̃�1 − �̃�2)𝑑1𝑖 − (�̃� − �̃�2)𝑑2𝑖
}

|𝐼∗
]

|𝐼1
]

. (74)

Noting that the conditional expectation of �̃� in Eq. (74) can be re-written as

𝐸[�̃�|𝐼∗] = 𝐸[�̃�|�̃�1, �̃�𝑖, 𝑞, �̃�2, �̃�2𝑖] = 𝐸[�̃�|�̃�1, �̃�𝑖, 𝑞, �̃�2] = �̃�2𝑖.

𝐸𝑢
[

−exp
{

−(�̃� − �̃�2)𝑑2𝑖
}

|𝐼∗
]

=𝐸𝑢

[

−exp
{

−
(�̃� − �̃�2)(�̃�2𝑖 − �̃�2)

𝛽∗𝑖

}

|�̃�1, �̃�𝑖, 𝑞, �̃�2, �̃�2𝑖

]

= − exp

{

−
(�̃�2𝑖 − �̃�2)2

𝛽∗𝑖
+

(�̃�2𝑖 − �̃�2)2𝛽∗𝑖
2(𝛽∗𝑖 )2

}

= − exp
{

−
(�̃�2𝑖 − �̃�2)2

2𝛽∗𝑖

}

. (75)

According to model setting and results in the proof of Theorem 1, we know that

�̃�2𝑖 − �̃�2

= 1 [

𝑘2�̃�2 − (ℎ2𝑚2𝑚2𝛿2𝑏 + ℎ2𝑚2𝑚2𝑏2)𝑞
]

−
𝑘2𝑖 �̃�2,
16

𝑘2𝑖 1 2 1 2 𝑘1𝑖
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=
ℎ2𝑚2

1𝑚
2
2𝛿

2

𝑘2𝑖
𝑀, (76)

where 𝑀 = (𝑏 − 1
𝑠2𝑖
)�̃�2 +

1
𝑠2𝑖
�̃�𝑖 − 𝑏𝑞. Then by taking Eqs. (75), (76) into (74), Eq. (74) can be re-expressed as

𝐸�̃�2 ,�̃�2𝑖

[

−exp
{

(�̃�1 − �̃�2)𝑑1𝑖 −
(�̃�2𝑖 − �̃�2)2

2𝛽∗𝑖

}

|𝐼1

]

=𝐸�̃�2

[

−exp

{

(�̃�1 − �̃�2)𝑑1𝑖 −
ℎ2𝑚2

1𝑚
2
2𝛿

2

2𝑘2𝑖
𝑀2

}

|𝐼1

]

. (77)

To solve the optimal demand function in period 1 in Eq. (77), we need to attain 𝐸[�̃�2|�̃�1, �̃�𝑖, 𝑞] and the 𝐷(�̃�2|�̃�1, �̃�𝑖, 𝑞) respectively

𝐸[𝑝2|�̃�1, �̃�𝑖, 𝑞] =
1
𝑘2

[

𝑚2
1𝑚

2
2𝛿

2𝑢 + ℎ2𝑚2
1𝑚

2
2𝑏𝑧 + ℎ2𝑚2

2𝛿
2�̃�1

]

+
ℎ2𝑚2

1𝛿
2

𝑘2
�̃�1𝑖 +

ℎ2𝑚2
1𝑚

2
2𝑏 + ℎ2𝑚2

1𝑚
2
2𝑏

2

𝑘2
𝑞, (78)

𝐸[𝑝2|�̃�1, �̃�𝑖, 𝑞] =
1

𝑘2𝑘1𝑖

[

𝑘2𝑖(𝑚2
1𝛿

2𝑢 + ℎ2𝑚2
1𝑏𝑧 + ℎ2𝛿2�̃�1)

+ ℎ2𝑚2
1𝛿

2ℎ2𝑚2
1𝛿

2 1
𝑠2𝑖

�̃�𝑖 + (ℎ2𝑚2
1𝑏

2𝑘2𝑖 + ℎ2𝑚2
1𝑚

2
2𝛿

2𝑏𝑘1𝑖)𝑞
]

(79)

𝐷
(

�̃�2|�̃�1, �̃�𝑖, 𝑞
)

= 𝐷

(

ℎ2𝑚2
1𝛿

2(�̃� + �̃�)
𝑘2

|�̃�1, �̃�𝑖, 𝑞

)

=
(ℎ2𝑚2

1𝛿
2)2𝑘2𝑖

𝑘1𝑖𝑘22
(80)

To simplify the notations, we define

𝐹 = 𝑘2𝑖(𝑚2
1𝛿

2𝑢 + ℎ2𝑚2
1𝑏𝑧 + ℎ2𝛿2�̃�1) + (ℎ2𝑚2

1𝛿
2)2 1

𝑠2𝑖
�̃�𝑖

+ (ℎ2𝑚2
1𝑏

2𝑘2𝑖 + ℎ2𝑚2
1𝑚

2
2𝛿

2𝑏𝑘1𝑖)𝑞, (81)

𝐸�̃�2

[

−exp

{

(�̃�1 − �̃�2)𝑑1𝑖 −
ℎ2𝑚2

1𝑚
2
2𝛿

2

2𝑘2𝑖
𝑀2

}

|𝐼1

]

∝ −∫ exp
[

−1
2

{

−2(�̃�1 − �̃�2)𝑑1𝑖 +
ℎ2𝑚2

1𝑚
2
2𝛿

2

𝑘2𝑖
𝑀2

+
𝑘1𝑖𝑘22

(ℎ2𝑚2
1𝛿

2)2𝑘2𝑖

[

�̃�2 −
1

𝑘2𝑘1𝑖
𝐹
]2
}

]

𝑑�̃�2. (82)

e tidy Eq. (82) as follows

− ∫ exp
[

−1
2

{

(
ℎ2𝑚2

1𝑚
2
2𝛿

2

𝑘2𝑖
(𝑏 − 1

𝑠2𝑖
)2 +

𝑘1𝑖𝑘22
(ℎ2𝑚2

1𝛿
2)2𝑘2𝑖

)�̃�22 − 2�̃�2
(

ℎ2𝑚2
1𝑚

2
2𝛿

2

𝑘2𝑖
( 1
𝑠2𝑖

�̃�𝑖 − 𝑏𝑞)( 1
𝑠2𝑖

− 𝑏) +
𝑘2

(ℎ2𝑚2
1𝛿

2)2𝑘2𝑖
𝐹 − 𝑑1𝑖

) }

+ �̃�1𝑑1𝑖

]

𝑑�̃�2, (83)

where
ℎ2𝑚2

1𝑚
2
2𝛿

2

𝑘2𝑖
(𝑏 − 1

𝑠2𝑖
)2 +

𝑘1𝑖𝑘22
(ℎ2𝑚2

1𝛿
2)2𝑘2𝑖

=
(𝑘2 − 𝑘2𝑖)2

ℎ2𝑚2
1𝑚

2
2𝛿

2𝑘2𝑖
+

𝑛4𝑘1𝑖𝑘22
(ℎ2𝑚2

1𝑚
2
2𝛿

2)2𝑘2𝑖

= 1
(ℎ2𝑚2

1𝑚
2
2𝛿

2)2𝑘2𝑖

[

𝑚2
2𝑘

2
2𝑘2𝑖 − 2ℎ2𝑚2

1𝑚
2
2𝛿

2𝑘2𝑘2𝑖 + ℎ2𝑚2
1𝑚

2
2𝛿

2𝑘22𝑖
]

=
𝑘2𝑖 − 𝑘2
2 2 2 2

+
𝑚2
2𝑘

2
2 − ℎ2𝑚2

1𝑚
2
2𝛿

2𝑘2
2 2 2 2 2
17
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N

p

=
𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘2𝑘1
(ℎ2𝑚2

1𝛿
2)2

, (84)

and
ℎ2𝑚2

1𝑚
2
2𝛿

2

𝑘2𝑖
( 1
𝑠2𝑖

�̃�𝑖 − 𝑏𝑞)( 1
𝑠2𝑖

− 𝑏) +
𝑘2

(ℎ2𝑚2
1𝛿

2)2𝑘2𝑖
𝐹

=
𝑘2

(ℎ2𝑚2
1𝛿

2)2
(𝑚2

1𝛿
2𝑢 + ℎ2𝑚2

1𝑏𝑧 + ℎ2𝛿2�̃�1) +
1
𝑠2𝑖

�̃�𝑖

+

[

(ℎ2𝑚2
1𝑏

2 + ℎ2𝑚2
1𝛿

2𝑏)𝑘2
(ℎ2𝑚2

1𝛿
2)2

− 𝑏

]

𝑞. (85)

Then by taking Eqs. (84) and (85) into Eq. (83), and omitting the terms unrelated to 𝑑1𝑖 and �̃�2, we have

−∫ exp
[

−1
2

{

(
𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

)�̃�22 − 2�̃�2
[

𝑘2
(ℎ2𝑚2

1𝛿
2)2

(𝑚2
1𝛿

2𝑢 + ℎ2𝑚2
1𝑏𝑧 + ℎ2𝛿2�̃�1) +

1
𝑠2𝑖

�̃�𝑖

+

{

(ℎ2𝑚2
1𝑏

2 + ℎ2𝑚2
1𝛿

2𝐴)𝑘2
(ℎ2𝑚2

1𝛿
2)2

− 𝑏

}

𝑞 − 𝑑1𝑖

]

}

+ �̃�1𝑑1𝑖

]

𝑑�̃�2

The above integral can be written as

−𝑒𝑥𝑝[�̃�1𝑑1𝑖

+

{

𝑘2
(ℎ2𝑚2

1𝛿
2)2

(𝑚2
1𝛿

2𝑢 + ℎ2𝑚2
1𝑏𝑧 + ℎ2𝛿2�̃�1) +

1
𝑠2𝑖
�̃�𝑖 +

[

(ℎ2𝑚2
1𝑏

2+ℎ2𝑚2
1𝛿

2𝑏)𝑘2
(ℎ2𝑚2

1𝛿
2)2

− 𝑏
]

𝑞 − 𝑑1𝑖

}2

2(
𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

)
]

∫ 𝑒𝑥𝑝
[

−1
2
(
𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

)
[

�̃�2

−

(

𝑘2
(ℎ2𝑚2

1𝛿
2)2

(𝑚2
1𝛿

2𝑢 + ℎ2𝑚2
1𝑏𝑧 + ℎ2𝛿2�̃�1) +

1
𝑠2𝑖

�̃�𝑖

+

[

(ℎ2𝑚2
1𝑏

2 + ℎ2𝑚2
1𝛿

2𝑏)𝑘2
(ℎ2𝑚2

1𝛿
2)2

− 𝑏

]

𝑞 − 𝑑1𝑖

)

/

(
𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

)
]

2
]

𝑑�̃�2.

oting that the integral part in the above expression contains a core of normal density with mean:

𝑘2
(ℎ2𝑚2

1𝛿
2)2

(𝑚2
1𝛿

2𝑢 + ℎ2𝑚2
1𝑏𝑧 + ℎ2𝛿2�̃�1) +

1
𝑠2𝑖
�̃�𝑖 +

[

(ℎ2𝑚2
1𝑏

2 + ℎ2𝑚2
1𝛿

2𝑏)𝑘2
(ℎ2𝑚2

1𝛿
2)2

− 𝑏

]

𝑞 − 𝑑1𝑖

(
𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

)

and variance
[ 𝑘2𝑖−𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2 + 𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

]−1. Which suggests that the integral can be ignored and we only need to maximize the exponent
art in the above expression. Thus, we can attain the demand function of period 1 as

𝑑1𝑖 =
𝑘2

(ℎ2𝑚2
1𝛿

2)
(𝑚2

1𝛿
2𝑢 + ℎ2𝑚2

1𝑏𝑧 + ℎ2𝛿2�̃�1)

+

[

(ℎ2𝑚2
1𝑏

2 + ℎ2𝑚2
1𝛿

2𝑏)𝑘2
(ℎ2𝑚2

1𝛿
2)2

− 𝑏

]

𝑞

−

(

𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘2𝑘1
(ℎ2𝑚2

1𝛿
2)2

)

�̃�1.

Next, by the market clear condition, ∑ 𝑑1𝑖 = 𝑛�̃�, we have

𝑛�̃� =
∑ 𝑘2𝑚2

1𝛿
2𝑢

(ℎ2𝑚2
1𝛿

2)2
+
∑ 𝑘2ℎ2𝑚2

1𝑏𝑧

(ℎ2𝑚2
1𝛿

2)2
+
∑ 𝑘2ℎ2𝛿2�̃�1

(ℎ2𝑚2
1𝛿

2)2
+
∑ 1

𝑠2𝑖
�̃�𝑖

+
∑

{

(ℎ2𝑚2
1𝑏

2 + ℎ2𝑚2
1𝛿

2𝑏)𝑘2
2 2 2 2

− 𝑏

}

𝑞
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P

−
∑

(

𝑘2𝑖 − 𝑘2
ℎ2𝑚2

1𝑚
2
2𝛿

2
+

𝑘1𝑘2
(ℎ2𝑚2

1𝛿
2)2

)

�̃�1.

Taking the limitation form of 𝑞 = �̃� − 1
𝑏 �̃� into above expression, we can solve out optimization problem in period 1 and have that

𝜋0 =
𝑚2𝛿2𝑢 + ℎ2𝑚2

1𝑏𝑧
𝑘1

, (86)

𝜋1 =
ℎ2𝛿2

𝑘1
, (87)

𝜋∗∗ =
ℎ2𝑚2

1𝑏
2 + ℎ2𝑚2

1𝛿
2𝑏

𝑘1
, (88)

𝛾∗∗ =
ℎ2𝑚2

1𝑏 + ℎ2𝑚2
1𝛿

2

𝑘1
. (89)

This completes the proof of Theorem 2. □

Appendix C. The proof of propositions and corollaries

In this section, we provide the proof of proposition 2, and equation 21. Other proof processes are easy to handle, so we omit
them.

Based on the results in Theorem 1 and 2, as a natural result, we have:

𝐸(|�̃�2 − �̃�1|) =
(ℎ2𝑚2

1𝛿
2)2

𝑘1𝑘2
|𝑧|.

roof of Proposition 2. We calculate each period’s demand for trader 𝑖:

𝑑1𝑖 =
1
𝑠2𝑖

�̃�𝑖 +

1
𝑠2𝑖

− 𝑏

𝑘1
[𝑚2

1𝛿
2(�̃� − 𝑢) − 𝑚2

1ℎ
2𝑏𝑧 − ℎ2𝛿2𝜖

+ (ℎ2𝑚2
1𝛿

2 + ℎ2𝑚2
1𝑏)�̃�] + �̃�, (90)

𝑑2𝑖 =
1
𝑠2𝑖

�̃�𝑖 +
𝑚2
2(

1
𝑠2𝑖

− 𝑏)

𝑘2
[𝑚2

1𝛿
2(�̃� − 𝑢) − 𝑚2

1ℎ
2𝑏𝑧 − ℎ2𝛿2𝜖

−
𝑚2
1ℎ

2𝛿2

𝑚2
2

�̃� + (ℎ2𝑚2
1𝛿

2 + ℎ2𝑚2
1𝑏)�̃�] + �̃�. (91)

So the demand change of trader 𝑖 is:

𝑑2𝑖 − 𝑑1𝑖 =(
𝑚2
2

𝑘2
− 1

𝑘1
)( 1
𝑠2𝑖

− 𝑏)[𝑚2
1𝛿

2(�̃� − 𝑢) − 𝑚2
1ℎ

2𝑏𝑧 − ℎ2𝛿2𝜖

+ (ℎ2𝑚2
1𝛿

2 + ℎ2𝑚2
1𝑏)�̃�] −

𝑚2
1ℎ

2𝛿2( 1
𝑠2𝑖

− 𝑏)

𝑘2
�̃�

=
−𝑚2

1ℎ
2𝛿2( 1

𝑠2𝑖
− 𝑏)

𝑘1𝑘2
[(𝑝2 − 𝑝1)

𝑘2𝑘1
ℎ2𝑚2

1𝛿
2
− 𝑘1�̃�]

−

𝑚2
1ℎ

2𝛿2( 1
𝑠2𝑖

− 𝑏)

𝑘2
�̃�

= − ( 1
𝑠2𝑖

− 𝑏)(�̃�2 − �̃�1) □ (92)

Proof of Eq. 21. Here we provide the calculation process of 𝑒𝑓𝑓1, the 𝑒𝑓𝑓2 is similar with 𝑒𝑓𝑓1. based on the proof process of
Theorem 2, �̃�1 = 𝜋0 + 𝜋1�̃�1 + 𝜋∗∗�̃� + 𝛾∗∗�̃�

𝑣𝑎𝑟(�̃�1) = 𝜋2
1 (ℎ

2 + 𝑚2
1) + (𝜋∗∗)2ℎ2 + (𝛾∗∗)2𝛿2 + 2𝜋1𝜋∗∗ℎ2

𝑐𝑜𝑣(�̃�1, �̃�) = 𝜋1ℎ
2 + 𝜋∗∗ℎ2

𝑣𝑎𝑟(�̃�) = ℎ2
19
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b

t

w
t
(

V
d

then

var(�̃�|�̃�1) = 𝑣𝑎𝑟(�̃�) −
𝑐𝑜𝑣(�̃�1, �̃�)2

𝑣𝑎𝑟(�̃�1)

ring the above values into var(�̃�|�̃�1) and then take inverse, we can receive Eq. (21) □

Appendix D. The relationship with existing models

We discuss in this subsection the relationship between our model and the existing related models by Kim and Verrecchia
(1991) and Ozsoylev and Walden (2011). As aforementioned, our proposed model is more general. To illustrate it, we rewrite
the equilibrium price in the information precision form as:

�̃�1 =
1
ℎ2
�̃� + 1

𝛿2
𝑏�̃�

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 𝑏2 1

𝛿2

+

1
𝑚2
1

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 𝑏2 1

𝛿2

�̃�1

+
𝑏 + 𝑏2 1

𝛿2

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 𝑏2 1

𝛿2

�̃� −
1 + 𝑏 1

𝛿2

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 𝑏2 1

𝛿2

�̃�, (93)

�̃�2 =
1
ℎ2
�̃� + 1

𝛿2
𝑏�̃�

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 1

𝑚2
2
+ 𝑏2 1

𝛿2

+

1
𝑚2
1

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 1

𝑚2
2
+ 𝑏2 1

𝛿2

�̃�1

+

1
𝑚2
2

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 1

𝑚2
2
+ 𝑏2 1

𝛿2

�̃�2 +
𝑏 + 𝑏2 1

𝛿2

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 1

𝑚2
2
+ 𝑏2 1

𝛿2

�̃�

−
1 + 𝑏 1

𝛿2

𝑏 + 1
ℎ2

+ 1
𝑚2
1
+ 1

𝑚2
2
+ 𝑏2 1

𝛿2

�̃�. (94)

The model of Ozsoylev and Walden (2011) has only one period and has no public information signal. The equilibrium price in
heir model is:

�̃� =
1
ℎ2
𝑢 + 1

𝛿2
𝑏𝑧

𝑏 + 1
ℎ2

+ 𝑏2 1
𝛿2

+
𝑏 + 𝑏2 1

𝛿2

𝑏 + 1
ℎ2

+ 𝑏2 1
𝛿2

�̃� −
1 + 𝑏 1

𝛿2

𝑏 + 1
ℎ2

+ 𝑏2 1
𝛿2

�̃�, (95)

here the notation is as same as our model. By noting that there is no public information signal, which means 1
𝑚2
1
= 1

𝑚2
2
= 0. Taking

he restriction into (93) and (94), we can easily see that (93) and (94) collapse to (95). This shows that Ozsoylev and Walden
2011)’s model is really a special case of our model.

We then show that Kim and Verrecchia (1991)’s model is also a special case of our model. Different from our model, Kim and
errecchia (1991) consider a continuous trader system where traders have independent error terms (i.e., the traders in the market
o not share their private information.) By making unified notation, the equilibrium price they obtain is:

�̃�1 = 1
1
ℎ2

+ 1
𝑚2
1
+ 1

𝑠2
+ ( 1

𝑠2
)2 1

𝛿2

[ 1
ℎ2

𝑢 + 1
𝑚2
1

�̃�1 + ( 1
𝑠2

+ ( 1
𝑠2

)2 1
𝛿2

)�̃�

−(1 + 1
𝑠2

1
𝛿2

)�̃�], (96)

�̃�2 = 1
1
ℎ2

+ 1
𝑚2
1
+ 1

𝑚2
2
+ 1

𝑠2
+ ( 1

𝑠2
)2 1

𝛿2

[ 1
ℎ2

𝑢 + 1
𝑚2
1

�̃�1 +
1
𝑚2
2

�̃�2 + ( 1
𝑠2

+( 1
𝑠2

)2 1
𝛿2

)�̃� − (1 + 1
𝑠2

1
𝛿2

)�̃�]. (97)

As mentioned previously, 𝑏 =
∑

[𝐖]𝑖𝑖
𝑠2𝑛

in our model represents the connectedness of the information network. The absence of an
information network means that each trader only connects with herself and all traders have independent private signals. This suggests
that ∑

[𝐖]𝑖𝑖 = 𝑛, then 𝑏 = 1
𝑠2

, and hence Eqs. (93) and (94) just become (96) and (97). This demonstrates that the model of Kim
and Verrecchia (1991) is a special case of our model.

Appendix E. An example about the network

We give an example in Fig. E.1 to better illustrate the economic implications of the four hypotheses.
20
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𝜖

Fig. E.1. Examples of network operation.

There are 7 traders, labeled by 1, 2, 3,… , 7. Each trader observes an initial private information signal 𝜏𝑖 = �̃�+𝜖𝑖, where �̃� ∼ 𝑁(𝑢, ℎ2)
represents the return of the risky asset, and 𝜖𝑖 ∼ 𝑁(0, 𝑠2) represents the noisy part of each signal and its role is to prevent traders
from knowing the true value of risky asset.

We define 𝑅𝑖 as the neighbor set of trader 𝑖. 𝑅𝑎{𝑖} is the neighbor set of trader 𝑖 in Fig. E.1(a), and this set includes trader 𝑖
himself. We can write the neighbor set of each trader in Fig. E.1(a) as: 𝑅𝑎{1} = {1, 2, 3, 4}; 𝑅𝑎{2} = {1, 2, 3, 4}; 𝑅𝑎{3} = {1, 2, 3, 6, 7};
𝑅𝑎{4} = {1, 2, 4, 5}; 𝑅𝑎{5} = {4, 5}; 𝑅𝑎{6} = {3, 6}; 𝑅𝑎{7} = {3, 7}. Similarly, we write the neighbor set of each trader in Fig. E.1(b)
as: 𝑅𝑏{1} = {1, 3, 4}; 𝑅𝑏{2} = {2, 3, 4}; 𝑅𝑏{3} = {1, 2, 3, 6, 7}; 𝑅𝑏{4} = {1, 2, 4, 5}; 𝑅𝑏{5} = {4, 5}; 𝑅𝑏{6} = {3, 6}; 𝑅𝑏{7} = {3, 7}.

Next, we will explain the four hypotheses one by one as follows.
(i). Traders with more neighbors receive more precise signals;
We take traders 2 and 7 as an example. Trader 2 has 4 neighbors (𝑅𝑎{2} = {1, 2, 3, 4}), trader 7 has 2 neighbors (𝑅𝑎{7} = {3, 7}).
Based on the linear structure in information network, after communicating with their neighbors, the new private information of

traders 2 and 7 can be written as:

�̃�2 =
𝜏1 + 𝜏2 + 𝜏3 + 𝜏4

4
= �̃� +

𝜖1 + 𝜖2 + 𝜖3 + 𝜖4
4

= �̃� + �̃�2,

�̃�7 =
𝜏3 + 𝜏7

2
= �̃� +

𝜖3 + 𝜖7
2

= �̃� + �̃�7.

where �̃�2 = 𝜖1+𝜖2+𝜖3+𝜖4
4 and �̃�7 = 𝜖3+𝜖7

2 . Combined with the distribution properties of 𝜖𝑖 (𝜖1 ⟂ 𝜖2 ⟂ 𝜖3 ⟂ 𝜖4 ⟂ 𝜖5 ⟂ 𝜖6 ⟂ 𝜖7, and

�̃� ∼ 𝑁(0, 𝑠2)), we have 𝐷(�̃�2) =
𝑠2

4 ; 𝐷(�̃�7) =
𝑠2

2 .

The precision of information is the inverse of its variance. We have 𝑝𝑟𝑒𝑠𝑖𝑜𝑛(�̃�2) =
4
𝑠2

> 𝑝𝑟𝑒𝑠𝑖𝑜𝑛(�̃�7) =
2
𝑠2

, which is the implication
of hypothesis (i). In reality, the hypothesis is also reasonable, if one has more neighbor, he will receive more information from
others and attain a more precision information.

(ii). All else equal, connected traders have higher signal correlation than non-connected ones;
To illustrate the hypothesis, we define another network in Fig. E.1(b). The structures of network 𝑎 and 𝑏 are identical except for

the missing link between traders 1 and 2 in network 𝑏. We can calculate the correlation between 𝑎 and 𝑏 as follows:
In Fig. E.1(a): 𝐶𝑜𝑟𝑟𝑎(�̃�1, �̃�2) = 𝐶𝑜𝑟𝑟(�̃� + 𝜖1+𝜖2+𝜖3+𝜖4

4 , �̃� + 𝜖1+𝜖2+𝜖3+𝜖4
4 ) = 1,

In Fig. E.1(b): 𝐶𝑜𝑟𝑟𝑏(�̃�1, �̃�2) = 𝐶𝑜𝑟𝑟(�̃� + 𝜖2+𝜖3+𝜖4
4 , �̃� + 𝜖1+𝜖3+𝜖4

4 ) =
ℎ2+ 2𝑠2

9

ℎ2+ 𝑠2
3

.

𝐶𝑜𝑟𝑟𝑏(�̃�1, �̃�2) < 𝐶𝑜𝑟𝑟𝑎(�̃�1, �̃�2), which is the economic meanings of hypothesis (ii).
(iii). If two traders have no common neighbors, then the error terms of their signals are uncorrelated;
We take traders 5 and 7 in Fig. E.1(a) as an example. In Fig. E.1(a), 𝑅𝑎{5} = {4, 5}; 𝑅𝑎{7} = {3, 7}, the two traders do not have

common neighbors. Under the linear structure, the new private information of traders 5 and 7 can be written as:

�̃�5 =
𝜏4 + 𝜏5

2
= �̃� +

𝜖4 + 𝜖5
2

= �̃� + �̃�5,

�̃�7 =
𝜏3 + 𝜏7

2
= �̃� +

𝜖3 + 𝜖7
2

= �̃� + �̃�7.
21
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T
b
n

R

B
C
C
C
C
D
D
D
D
E
E

F
G
G
G
G
G
H

H
H
H
H

J
K
K
K
L
L

L

M
O
S
T
V
V
W
W

W
X

The independence of error terms is (𝜖4 ⟂ 𝜖5 ⟂ 𝜖3 ⟂ 𝜖7)

𝐶𝑜𝑟𝑟𝑎(�̃�5, �̃�7) = 𝐶𝑜𝑟𝑟𝑎(
𝜖4 + 𝜖5

2
,
𝜖3 + 𝜖7

2
) = 0.

Thus, if two traders have no common neighbors, then the error terms of their signals are uncorrelated.
(iv). Traders who have the same neighbors receive the same signals.
We take traders 1 and 2 in Fig. E.1(a) as an example. In Fig. E.1(a), 𝑅𝑎{1} = {1, 2, 3, 4}; 𝑅𝑎{2} = {1, 2, 3, 4}, trader 1 and trader

2 have the same neighbor set (𝑅𝑎{1} = 𝑅𝑎{2} = {1, 2, 3, 4}). Under the linear structure, The new private information from traders 1
and 2 can be written as:

�̃�1 =
𝜏1 + 𝜏2 + 𝜏3 + 𝜏4

4
= �̃� +

𝜖1 + 𝜖2 + 𝜖3 + 𝜖4
4

= �̃� + �̃�1,

�̃�2 =
𝜏1 + 𝜏2 + 𝜏3 + 𝜏4

4
= �̃� +

𝜖1 + 𝜖2 + 𝜖3 + 𝜖4
4

= �̃� + �̃�2.

It is obvious that �̃�1 = �̃�2, which means trader 1 and trader 2 receive the same signals.
The covariance matrix 𝐒 = 𝑠2𝐃−1𝐖𝐃−1 has the following expanded form:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
[𝐖]11

[𝐖]12
[𝐖]11[𝐖]22

⋯ [𝐖]1𝑛
[𝐖]11[𝐖]𝑛𝑛

[𝐖]21
[𝐖]22[𝐖]11

1
[𝐖]22

⋯ [𝐖]2𝑛
[𝐖]22[𝐖]𝑛𝑛

⋮ ⋮ ⋱ ⋮
[𝐖]𝑛1

[𝐖]𝑛𝑛[𝐖]11
[𝐖]𝑛2

[𝐖]𝑛𝑛[𝐖]22
⋯ 1

[𝐖]𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

he non-diagonal elements measure the correlation of different information after communication via network. The correlation
etween two traders’ information depends on the number of common neighbors ([𝐖]𝑖𝑗). Specifically, if traders do not have common
eighbors ([𝐖]𝑖𝑗 = 0), there will be no correlation between their information.
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