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Spatial autocorrelation is a parameter of importance for network data analysis. To estimate spatial autocor-
relation, maximum likelihood has been popularly used. However, its rigorous implementation requires the
whole network to be observed. This is practically infeasible if network size is huge (e.g., Facebook, Twitter,
Weibo, WeChat, etc.). In that case, one has to rely on sampled network data to infer about spatial autocor-
relation. By doing so, network relationships (i.e., edges) involving unsampled nodes are overlooked. This
leads to distorted network structure and underestimated spatial autocorrelation. To solve the problem, we
propose here a novel solution. By temporarily assuming that the spatial autocorrelation is small, we are
able to approximate the likelihood function by its first-order Taylor’s expansion. This leads to the method
of approximate maximum likelihood estimator (AMLE), which further inspires the development of paired
maximum likelihood estimator (PMLE). Compared with AMLE, PMLE is computationally superior and
thus is particularly useful for large-scale network data analysis. Under appropriate regularity conditions
(without assuming a small spatial autocorrelation), we show theoretically that PMLE is consistent and
asymptotically normal. Numerical studies based on both simulated and real datasets are presented for
illustration purpose.

KEY WORDS: Approximate maximum likelihood estimator; Network data analysis; Paired maximum
likelihood estimator; Spatial autocorrelation.

INTRODUCTION

In the past few decades, there has been a surge of interest
in analysis of network data. This is witnessed by a number of
published book volumes including, for example, Scott (1992),
Wasserman and Faust (1994), Cohendet et al. (1998), LeSage
and Pace (2009), and research papers such as Case (1991),
Brock and Durlauf (2001), Calvó-Armengol, Patacchini, and
Zenou (2009), Lee, Li, and Lin (2010), among others. Social
network analysis has produced a set of methods to analyze so-
cial structure. Practitioners are particularly interested in spatial
autocorrelation, which plays an important role in characteriz-
ing spatial correlation between different nodes. Once spatial
autocorrelation is estimated and the network structure is fixed,
one can predict a node’s behavior by inferring about its friends.
This allows practitioners to (for example) evaluate an appli-
cant’s credibility by the credit history of its connected network
friends. This makes fast, accurate, and large-scale online credit
scoring practically feasible. See also Lee, Li, and Lin (2010)
and Bronnenberg and Mahajan (2001) for some other interesting
economics and marketing applications. To estimate spatial au-
tocorrelation, a spatial autoregression model has been proposed
and the method of maximum likelihood has been popularly used
(Ord 1975; Anselin 1980; Lee, Li, and Lin 2010).

Despite its popularity, the practical implementation of the
spatial autoregression model and the corresponding maximum
likelihood estimation are problematic. The main problem is that
the popularly used spatial autoregression model is assumed for
the network of the entire population, while statistical analysis
is conducted based on sampled data. Inevitably, social interac-
tions generated between the sampled and unsampled units are
ignored. To fix the problem, one might want to assume that the
whole network data are available. Unfortunately, this is seldom
true in real world. Consider for example, the Facebook contains
more than 700 million active users. Except the Facebook itself,
nobody else can depict the entire network structure easily. Even
for the Facebook, computing the whole network data for every
research project is not wise, because the cost is to be signifi-
cant. As a popular remedy, one might want to collect a sample
with a practical size. Subsequently, it is assumed that the in-
tended network model holds for the sampled data. This is also
problematic, because the autocorrelation between the sampled
and unsampled units are overlooked. As a consequence, the true
spatial autocorrelation would be underestimated, if the method
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of maximum likelihood is incorrectly applied (Chen, Chen, and
Xiao 2010). Then, how to conduct a correct maximum likeli-
hood estimation for spatial autocorrelation based on sampled
network data becomes a problem of interest.

Following Chen, Chen, and Xiao (2013) and Lee, Li, and
Lin (2010), we assume a normal disturbance. This enables us
to rigorously spell out the marginal likelihood function for the
sampled data. Unfortunately, the resulting likelihood function
involves both the observed and unobserved social network struc-
ture, which cannot be practically optimized. To solve the prob-
lem, we propose a novel solution. To fix the idea, we tem-
porarily assume that the spatial autocorrelation is small. As
a result, we are able to approximate the actual log-likelihood
function by its first-order Taylor’s expansion with respect to
spatial autocorrelation. Surprisingly, we find that the resulting
approximation involves mainly the observed network structure
and the degree (i.e., the number of followers or followees) of
each unit. Fortunately, degree numbers are summarized for each
unit by most popular social network Web sites. See, for exam-
ple, Facebook, Twitter, Sina Weibo, and others. Thus, they can
be easily obtained, and the approximated log-likelihood func-
tion can be practically optimized. This leads to an approximate
maximum likelihood estimator (AMLE). Unreported numerical
studies demonstrate that the AMLE is consistent and asymp-
totically normal when spatial autocorrelation is reasonably
small.

Despite its theoretical attractiveness, AMLE is not cheap
computationally. Let n be the sample size. The computation
of AMLE involves a n × n matrix, whose determinant needs to
be evaluated and thus results in expensive computation. As a re-
sult, AMLE cannot be our final solution for large-scale network
data analysis. Instead, it can only serve as an intermediate step.
However, this intermediate step inspires the following novel
solution. Specifically, for a total of n sampled units, we form
them into different pairs and each pair contains two different
nodes, denoted by i and j. This leads to a total of n(n − 1)/2
pairs. By treating {i, j} as a small sample and following the idea
of AMLE, the first-order approximation of their log-likelihood
function can be obtained. Interestingly, we find that the resulting
objective function is free of spatial autocorrelation, unless the
two samples i and j are connected with each other, by either one
or two edges. This suggests that the disconnected pairs should
carry little information about spatial autocorrelation and can
be ignored for parameter estimation. The consequence is that a
tremendous amount of computation can be saved, because the
dominating portion of the paired samples are disconnected. We
sum the approximated log-likelihood functions over all the con-
nected pairs and then maximize the summation with respect to
spatial autocorrelation. The resulting estimator enjoys an ele-
gant analytical solution and is referred to as a paired maximum
likelihood estimator (PMLE).

Even though PMLE is inspired by the idea of AMLE un-
der the temporary assumption that the spatial autocorrelation
is small, the consistency and asymptotic normality of PMLE
can be rigorously established without such a stringent assump-
tion. Instead, we make use of the fact that most large-scale so-
cial networks are extremely sparse, so that two sampled nodes
can hardly be indirectly connected through unobserved social
networks. Under this assumption, we show theoretically that

PMLE is
√

n-consistent and asymptotically normal. Compared
with AMLE, PMLE is computationally superior. Specifically,
the computational complexity of PMLE is linear in the number
of observed edges. This makes PMLE particularly attractive for
big data analysis and thus can serve as our final solution.

To summarize, we provide in this work the following im-
portant contributions to the literature. Chen, Chen, and Xiao
(2013) documented solid numerical evidence, which shows that
spatial autocorrelation can be seriously underestimated, if the
method of maximum likelihood is incorrectly applied on sam-
pled network data. However, how to conduct a correct maximum
likelihood estimation is less well understood. We then fill the
theoretical gap by the method of PMLE with well-developed
asymptotic theories. This is our first important contribution.
Second, do big data have to call for big computation? We ar-
gue that this is not always necessary. We believe that big data
call for smart computation! This is because for most big data
applications the sample size is huge. However, the computa-
tional resources available to most researchers and practitioners
are limited. It is then of great interest to develop novel method,
which is efficient not only statistically but also computationally.
This is the spirit of smart computation for big data analysis,
and leads to the development of PMLE for network data anal-
ysis, which is probably one of the most typical and important
types of big data analysis. Then, the spirit of “big data but smart
computation” is our second important contribution.

The rest of the article is organized as follows. Section 2
presents the model setup and the approximate likelihood the-
ory. This leads to the method of AMLE, which further inspires
the PMLE method, whose asymptotic theory is rigorously es-
tablished. To demonstrate its finite sample performances, nu-
merical studies based on both simulated and real datasets are
conducted in Section 3. Finally, the article is concluded with a
short discussion in Section 4. All technical details are left to the
Appendices.

2. THE METHODOLOGY

2.1 Model Setup

We consider a large network with N nodes. Its structure is
captured by a network adjacency matrix A = (aij ) ∈ R

N×N ,
where aij = 1 if the node i follows the node j and aij = 0
otherwise. For each i, we observe a continuous response Yi .
Due to the existence of spatial autocorrelation, the responses of
those connected nodes are expected to be correlated with each
other. To model such an interactive dependence structure, the
following spatial autoregression model has been popularly used
(Ord 1975; Anselin 1980; Bronnenberg and Mahajan 2001; Lee,
Li, and Lin 2010).

Y = ρWY + ε, (1)

where ρ ∈ R
1 is referred to as spatial autoregression parame-

ter (Banerjee, Carlin, and Gelfand 2004), Y = (Y1, . . . , YN )� ∈
R

N is the response vector, W = (wij ) ∈ R
N×N with wij =

aij /di and di = ∑N
j=1 aij is the normalized adjacency matrix,

and ε = (ε1, . . . , εN )� ∈ R
N is the residual vector with mean 0
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and covariance σ 2I ∈ R
N×N . Here I stands for a N × N identity

matrix.
By (2.1), we know that Y = (I − ρW )−1ε, provided that I −

ρW is invertible. According to Banerjee, Carlin, and Gelfand
(2004), we know that the largest singular value of W is 1. As a
result, to ensure the invertibility of (I − ρW ) for an arbitrary W
matrix, we must require |ρ| < 1. Otherwise, there always exits a
possibility to find a W matrix such that (I − ρW ) is singular. We
thus follow Banerjee, Carlin, and Gelfand (2004) and assume
|ρ| < 1 throughout the rest of this article. This implies that Y

follows a normal distribution with mean 0 and covariance

� = (σij ) = σ 2(I − ρW )−1(I − ρW�)−1. (2)

Obtaining Y and W need to have the whole network ob-
served, which is practically infeasible in most cases. In-
stead, one can draw a random sample of size n from SF =
{1, 2, . . . , N}. Without loss of generality, we assume that the
first n nodes are randomly selected from SF and are col-
lected byS = {1, 2, . . . , n}. Accordingly, the observed response
vector is Y1 = (Y1, . . . , Yn)� ∈ R

n and the observed network
adjacency matrix is A11 = (aij : 1 ≤ i, j ≤ n) ∈ R

n×n. As we
mentioned before, we also assume that the degree number of
each node is observed, that is, D1 = (di : 1 ≤ i ≤ n) ∈ R

n. Ac-
cordingly, the normalized adjacency matrix W11 = (wij : 1 ≤
i, j ≤ n) ∈ R

n×n is observed. Define Y2 = (Yn+1, . . . , YN )� ∈
R

N−n, which collects the responses from those unsampled
nodes. Thus, Y = (Y�

1 , Y
�
2 )� ∈ R

N . The matrix A is parti-
tioned accordingly as A = (A11, A12; A21, A22). Similarly, W
and I can be partitioned as W = (W11,W12; W21,W22) and
I = (I11,O12; O21, I22). Subsequently, we need to estimate the
unknown parameter ρ based on observed response Y1 and ob-
served network structure W11. It is noted that Y1, A11, and W11

are observed. In contrast, Y2, A12, A21, A22, W12, W21, and W22

are not.
As pointed out by Wall (2004), the interpretation about ρ

is not immediately straightforward. By (2.2) we know that the
actual spatial covariance (i.e., σij ) depends on both ρ and W.
As a result, ρ cannot be easily interpreted unless the network
structure W is fixed. This immediately suggests that comparing
ρ across different networks is not desirable. With a fixed W
and assuming |ρ| < 1, the following Taylor’s expansion can be
justified

� = (σij ) = σ 2
( ∞∑

k=0

ρkWk
){ ∞∑

k=0

ρk(W�)k
}

= σ 2
∞∑

m=0

ρm
{ k1,k2≥0∑

k1+k2=m

Wk1 (W�)k2

}
.

Note that all the components involved in W (and also W�)
are nonnegative. This suggests that σij (for two arbitrary nodes
i �= j ) should be a monotonically increasing function in ρ, if
the network structure W is fixed and ρ is nonnegative. Conse-
quently, ρ can be more precisely interpreted if the following
three conditions are satisfied simultaneously. They are, respec-
tively, (1) nonnegative ρ value, (2) a fixed network structure W,
and (3) a given node pair (i, j ). Under these three conditions,
larger size in ρ does lead to larger spatial covariance. Otherwise,
the interpretation could be much more complicated. See, for ex-

ample, Figure 5 on p. 320 (Wall 2004) for some counterintuitive
but illuminating discussion.

2.2 Approximate Maximum Likelihood

By model (2.1) and (2.2), we can define � = �−1 = σ−2(I −
ρW�)(I − ρW ) = σ−2(�11,�12; �21,�22), where

�11 = I11 − ρ(W11 + W�
11) + ρ2(W11W

�
11 + W21W

�
21),

�12 = −ρ(W�
21 + W12) + ρ2(W12W

�
11 + W22W

�
21),

�21 = −ρ(W21 + W�
12) + ρ2(W11W

�
12 + W21W

�
22),

�22 = I22 − ρ(W22 + W�
22) + ρ2(W12W

�
12 + W22W

�
22).

Note that cov(Y1) = �11, which is the first n × n diagonal block
matrix of �. We then have �−1

11 = σ−2(�11 − �12�
−1
22 �21).

Unfortunately, �11 is not practically computable, because it
involves �22, which is an unobserved and huge sized matrix with
dimension N − n. meanwhile, �−1

11 is a function of ρ. Under
the model assumption |ρ| < 1, one can verify that �−1

11 has
a Taylor’s expansion as �−1

11 = ∑∞
k=0 ρk�

(k)
11 ≈ ∑K

k=0 ρk�
(k)
11 ,

where K is some pre-specified approximation order and �
(k)
11

is some matrix-valued derivative. Obviously, larger K leads to
better approximation. However, it also calls for substantially
increased sampling efforts. Thus, practically it is appealing to
consider K = 1 as follows.

σ 2�−1
11 = �11 − �12�

−1
22 �21

= I11 − ρ(W11 + W�
11) + ρ2(W11W

�
11 + W21W

�
21)

−ρ2
{

(W�
21 + W12) + ρ(W12W

�
11 + W22W

�
21)

}
�−1

22

×
{

(W21 + W�
12) + ρ(W11W

�
12 + W21W

�
22)

}
= I11 − ρ(W11 + W�

11) + ρ2(W11W
�
11 + W21W

�
21)

−ρ2(W�
21W21 + W�

21W
�
12 + W12W21 + W12W

�
12)

+
∑
k>2

ρk�
(k)
11 ,

where the last equality is because �22 ≈ I22. Accordingly, we
know that �(1)

11 = (W11 + W�
11). This leads to the following first-

order approximation

σ 2�−1
11 ≈ I11 − ρ(W11 + W�

11). (3)

Note that expression (2.3) is indeed the first-order approxima-
tion of the submatrix of σ 2�−1 corresponding to Y1. Surpris-
ingly, we find that only W11 is involved in this approximation
(2.3) while other network structures (e.g., W12, W21, and W22)
are not. This implies that the first-order approximation of �−1

11
with respect to ρ is practically computable, even though �−1

11 it-
self is not. Accordingly, the corresponding approximation (after
negative two-times log transformation) should be computable.
It is given by

log
∣∣∣I11 − ρ(W11 + W�

11)
∣∣∣ − σ−2

Y
�
1

{
I11 − ρ(W11 + W�

11)
}
Y1

−n log σ 2.

Fix ρ and optimize the above objective function with respect
to σ 2. This leads to σ̂ 2 = n−1

Y
�
1 {I11 − ρ(W11 + W�

11)}Y1. We
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then replace σ 2 in (2.3) by σ̂ 2. This gives a profiled objective
function as

log
∣∣∣I11 − ρ(W11 + W�

11)
∣∣∣

−n log
[
n−1

Y
�
1 {I11 − ρ(W11 + W�

11)}Y1

]
= log

∣∣∣I11 − ρ(W11 + W�
11)

∣∣∣
−n log

[
1 − ρn−1σ̂−2

Y Y
�
1 (W11 + W�

11)Y1

]
≈ log

∣∣∣I11 − ρ(W11 + W�
11)

∣∣∣
+ρσ̂−2

Y Y
�
1 (W11 + W�

11)Y1,

where the constants independent of ρ are omitted, σ̂ 2
Y =

n−1
Y

�
1 Y1, and the last approximation is due to Taylor’s ex-

pansion and the temporary assumption that ρ is small. For a
practical dataset, we can always assume that the data have been
standardized so that σ̂ 2

Y = 1. This leads to the following highly
simplified objective function

�a(ρ) = log
∣∣∣I11 − ρ(W11 + W�

11)
∣∣∣ + ρY

�
1 (W11 + W�

11)Y1.

(4)
It is noted that �a(ρ) in (2.4) is not constructed based on the
accurate likelihood function of Y1. Instead, it is obtained by its
first-order approximation. We thus call the resulting estimator,
denoted by ρ̂a = argmax�a(ρ), as an approximate maximum
likelihood estimator (AMLE).

2.3 Paired Maximum Likelihood

As one can note, optimizing AMLE is not cheap. It is mainly
because I11 − ρ(W11 + W�

11) is a n × n matrix, whose determi-
nant needs to be computed. This is not a problem if the sample
size n is small or moderate. However, it could be a serious burden
if n is large. This motivates us to use AMLE as an intermediate
step to further inspire an estimator, which is computationally
superior.

Specifically, we consider an extreme situation with only two
nodes (denoted by i and j). In that case, the approximation (2.3)
is still valid with W11 = (0, wij ; wji, 0) ∈ R

2×2. Accordingly,
the objective function (2.4) can be used. We follow the idea
of composite likelihood (Shao 2003) and sum together all the
paired objective functions. This leads to

∑
i,j

log
{

1 − ρ2(aij /di + aji/dj )2
}

+2ρ
∑
i,j

YiYj (aij /di + aji/dj ).

It is noted that aij = aji = 0 for those disconnected pairs, and
thus the corresponding quantity is free of the spatial autocorre-
lation ρ. As a result, those disconnected pairs can be ignored

and the above quantity can be simplified as∑
aij +aji>0

log
{

1 − ρ2(aij /di + aji/dj )2
}

+2ρ
∑

aij +aji>0

YiYj (aij /di + aji/dj )

≈ −ρ2
∑

aij +aji>0

(aij /di + aji/dj )2 + 2ρ

∑
aij +aji>0

YiYj (aij /di + aji/dj ), (5)

where the approximation is due to Taylor’s expansion and the
temporary assumption that ρ is small. Then, it is interesting to
note that the quantity in (2.5) is a quadratic function in ρ, whose
optimizer enjoys an analytical solution given by

ρ̂p =
{ ∑

aij +aji>0

(aij /di + aji/dj )2
}−1

×
{ ∑

aij +aji>0

YiYj (aij /di + aji/dj )
}

= (nωn)−1
∑

(i,j )∈D
YiYjdij ,

where D = {(i, j ) : aij + aji > 0} collects all the connected
pairs, dij = dji = aij /di + aji/dj , and ωn = n−1 ∑

(i,j )∈D d2
ij .

Because ρ̂p is an estimator obtained by optimizing the paired
likelihood function, we refer to it as a paired maximum like-
lihood estimator (PMLE). Compared with the AMLE ρ̂a , the
PMLE ρ̂p is computationally much more efficient. This is be-
cause its computation only involves those connected pairs. This
makes PMLE particularly attractive for large-scale network data
analysis.

2.4 The Asymptotic Properties

For a given N-dimensional square matrix M = (mi1i2 : 1 ≤
i1, i2 ≤ N ) ∈ R

N×N , we define ‖M‖(n) = ∑
i1,i2≤n |mi1i2 |. Note

that, even though PMLE was inspired under the assumption ρ is
small, its consistency and asymptotic normality are free of such
a stringent requirement. They can be rigorously justified under
fairly reasonable conditions as given below.

(A1) Law of Large Numbers. There exists a constant ω >

0 such that tr(W2)/n = n−1 ∑
ij (aij /di + aji/dj )2 =

ωn → ω as n → ∞.
(A2) Network Sparsity. Write 	max = maxk>1 ‖Wk‖(n) +

maxk1,k2≥1 ‖Wk1,k2‖(n) + maxk1,k2,k3,k4≥1 ‖Wk1,k2,k3,k4‖(n),
where Wk1,k2 = Wk1 (Wk2 )� and Wk1,k2,k3,k4 =
Wk2 (Wk3 )�Wk4 (Wk1 )�. As n → ∞, we require that
	max = o(n1/2).

We argue that all those conditions are quite intuitive and rea-
sonable. The detailed explanations are given below.

Condition (A1) is a Law of Large Numbers-type condition.
It requires that the sampled network structure to maintain a
reasonable density level. For example, every node should be
involved in at least one edge. Otherwise, the network structure
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could too sparse (e.g., a network with no edge). In that case, we
should have ω = 0. Obviously, a network without enough edges
(i.e., too sparse) cannot provide sufficient information about
spatial autocorrelation. As a result, condition (A1) warrants the
number of edges observed in the network also diverges to infinity
as n → ∞.

Condition (A2) basically requires that the network structure
W to be sparse. To see this, consider two arbitrary nodes (e.g., i
and j). If the network structure is sparse, then the likelihood for
them to be indirectly connected is small. For example, a typi-
cal indirect connection with length 2 could be i → k → j for
some 1 ≤ k ≤ N . In this case, we should expect

∑N
k=1 aikakj to

be small on average for all possible (i, j ) pairs. This suggests
that ‖W 2‖(n) should be small as compared with

√
n. This is

typically true if the sampling fraction n/N is very small. Same
argument applies to paths with higher order lengths. Thus, we
should expect maxk ‖Wk‖(n) to be well controlled. Another typi-
cal indirect connection with length 2 could be i → k and j → k

for some 1 ≤ k ≤ N . In this case, we should have
∑N

k=1 aikajk

to be small on average for all possible (i, j ) pairs. This sug-
gests that ‖W 1,1‖(n) should be small. Same argument applies
to paths with higher order lengths. This leads to well-bounded
maxk1,k2 ‖Wk1,k2‖(n) and maxk1,k2,k3,k4 ‖Wk1,k2,k3,k4‖(n). This ex-
plains why condition (A2) controls the network sparsity level.
Intuitively, if the network is sufficiently sparse, then the sam-
pled edges should be mostly important for explaining the spa-
tial autocorrelation. As a result, if the sampled edges are used
appropriately, spatial autocorrelation should be estimated con-
sistently.

Theorem 1. Assume (A1) and (A2), then
√

n(ρ̂p − ρ)
d→

N (0, 2/ω) as n→∞.

By Theorem 1, we find that the asymptotic variance of PMLE
is analytically extremely simple and elegant. It is noted that the
asymptotic variance ω can be easily estimated by ωn, which
is just a function of the observed network structure W11. This
makes the practical inference simple.

3. NUMERICAL STUDIES

3.1 Simulating Network Data

To evaluate the finite sample performance of the proposed
methods, we present here a number of simulation studies. For
a fixed N, the network adjacency matrix A = (aij ) is simu-
lated as follows. First, generate N independent and identically
distributed random variables according to an exponential dis-
tribution with mean 10. Denote these variables by Ei with
1 ≤ i ≤ N . For each node i, we randomly select a sample size
of [Ei] from SF = {1, 2, . . . , n} without replacement, where
[Ei] stands for the smallest integer no less than Ei . Denote the
sample by Si . Define aij = 1 if j ∈ Si and aij = 0 otherwise.
In the third step, we force aij = aji for every i < j . In the
fourth step, we redefine aij = dij aij , where dij s are indepen-
dent binary random variables with P (dij = 1) = 0.5. Lastly, let
aii = 0 for every 1 ≤ i ≤ N . This leads to the final adjacency
matrix A. Subsequently, W can be computed by normalizing
each row of A. Thereafter, W is fixed throughout the rest of the
simulation study. For a reliable evaluation, each experiment is

randomly replicated M = 1000 times. For each random replica-
tion, the response is generated according to Y = (I − ρW )−1ε,
where ε ∈ R

N is simulated from a N-dimensional standard nor-
mal random vector. This leads to the whole network data W
and Y.

3.2 PMLE

In this study, we fix ρ = 0 or 0.2. Various combinations of
N and n are considered. For each combination, we fix sampling
proportion of n/N to be equal to 10%. Once W and Y are sim-
ulated, a random sample size of n is obtained. Based on the
sampled data, PMLE is computed. Its estimated standard error
(SE) is also obtained as ŜE = √

2ω
−1/2
n n−1/2. Denote the esti-

mator obtained in the mth simulation replication ( 1 ≤ m ≤ M .)
by ρ̂(m), and the corresponding SE estimate by ŜE

(m)
. Then,

the bias is evaluated as 
 = ρ − ρ̄ with ρ̄ = M−1 ∑M
m=1 ρ̂, and

the true SE as SE = {M−1 ∑M
m=1(ρ̂(m) − ρ̄)2}1/2. We also com-

pute the averaged SE estimate (i.e., ŜE) as M−1 ∑M
m=1 ŜE

(m)
.

With the estimated SE, the statistical significance of the spa-
tial autocorrelation can be tested. Specifically, for each simu-
lation iteration, a Z-type test statistic is constructed as Z(m) =
ρ̂(m)/ŜE

(m)
. For a given significance level α = 5%, we reject

the null hypothesis of H0 : ρ = 0 if |Z(m)| > z1−α/2, where zα

stands for the αth quantile of a standard normal distribution.
Accordingly, we summarize the empirical rejection probabil-
ity (ERP) as ERP = M−1 ∑

I (|Z(m)| > z1−α/2). Theoretically,
ERP corresponds to the empirical size if ρ = 0 and power if
ρ �= 0.

Detailed results are summarized in Table 1, from where we
can draw the following two conclusions. First, PMLE is consis-
tent, with both bias and SE decreasing toward 0 as N → ∞ and
n → ∞, regardless of ρ. Additionally, the estimated SE (i.e.,
ŜE) approximates the true SE quite well, because their average
values are very close to each other. Second, the reported ERP
values are fairly close to their nominal level α = 5% for ρ = 0.
This suggests that the implemented Z-type test can control Type
I error well. On the other side, the reported ERP values steadily
increases toward 100% as N → ∞ and n → ∞ if ρ = 0.2.
This confirms that the proposed Z-type test has a reasonable
power.

3.3 Sampling Method

In this study, we compare different sampling methods and
then evaluate their impact on PMLE accuracy. Data are gen-
erated in the same way as the previous subsection but with a
fix N = 100,000. By Theorem 1, the asymptotic efficiency of
PMLE is fully determined by the network structure through
the quantity ω ≈ ωn = n−1 ∑

(aij /di + aji/dj )2. A larger ωn

value implies better estimation accuracy. Thus, a good sam-
pling method should maximize the number of observed edges
(i.e., aij and aji). Obviously, the method of simple random sam-
pling (SRS) without replacement (Thompson 2012), is unlikely
to be the optimal choice. Instead, a snowball type sampling
method might be a good alternative. Here, we investigate one
particular type of the snowball sampling method. It is an iter-
ative method. In each iterative step, one seed node (e.g., i) is
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randomly selected and all its connected friends (i.e., every j sat-
isfying aij = 1) are collected. Both the sampled seed node and
its connected friends are accumulated. If the current accumu-
lated sample size is still below the target n, the above iterative
sampling process should be repeated. Otherwise, some sampled
nodes are randomly dropped so that the final sample size is ex-
actly n. For convenience, we refer to this sampling method as
SNOW.

With a slight abuse of notation, we use ρ̂(m) to denote PMLE
obtained in the mth iteration corresponding to one particu-
lar sampling method (i.e., SRS and SNOW). We then eval-
uate its estimation accuracy by mean squared error MSE =
M−1 ∑M

m=1(ρ̂(m) − ρ)2. Various choices of n are considered.
The resulting MSE are plotted in Figure 1 in log-scale, from
where we can draw the following observations. First, regard-
less of the sampling method, PMLE is consistent, because the
log MSE value monotonically decreases as the sample size in-
creases. Second, compared with SRS, SNOW offers a significant
improvement in terms of estimation accuracy. The difference ex-
hibited by SRS and SNOW in terms of log MSE can be as large
as 1.2 approximately for example n = 10,000. This suggests
that sampling method do play an important role for spatial au-
tocorrelation estimation. SNOW should be a useful method for
network sampling.

3.4 Sina Weibo Network Analysis

As our last numerical study, we present here a real net-
work example about Sina Weibo (www.weibo.com), which can
be viewed as a Twitter-type social media in Chinese com-
munity. The objective of this study is to understand how the
users of Sina Weibo interact with each other in terms of their
posting activity. For illustration purpose, we start with the
Weibo accounts of four major online travel agencies in main-
land China. They are respectively: CTRIP (www.ctrip.com),
ELONG (www.elong.com), MangoCity (www.mangocity.co),
and QUNAR (www.qunar.com). For each travel agency, we ran-
domly select 5,000 nodes from their followers. Subsequently,
those followers’ followers are also collected. Because condi-
tion (A2) is better satisfied by sparse network, this motivates
us to keep only those active users with relatively small de-
gree numbers. This gives the final network size N = 557,818.
Their follower–followee relationships (i.e., A) are recorded.
This is then treated as our whole network with a total of∑

aij =1,496,399 edges and
∑

i<j aij aji = 535,408 mutu-
ally connected pairs. For each node, we define the response
as the number of its posted messages in log-scale. The re-

Figure 1. Comparing different sampling methods by MSE in log-
scale.

sponses are standardized so that its mean is 0 and variance
is 1. With such a large network size, obtaining the maxi-
mum likelihood estimator or its approximate (i.e., AMLE) is
extremely difficult. However, the PMLE can be readily com-
puted by using a personal computer without much difficulty. It
gives ρ̂p = 0.154 with ŜE = 1.55 × 10−3. We thus conclude
that the estimated spatial autocorrelation is statistically sig-
nificant at 5% level. This implies that a Sina Weibo user’s
posting activity does correlated with each other in a nontrivial
way.

Given the whole network data, we next conducted a real data
based simulation study to check the effect of sampling on the
subsequent inferences. The study is implemented in a similar
manner as in Section 3.2. However, the difference is that the
whole network data (i.e., W and Y) are not generated by simu-
lation. Instead, they are directly derived from Sina Weibo. As a
result, the response values are fixed for each node across differ-
ent simulation iteration. The method of SRS is used. It is noted
that the true spatial autocorrelation coefficient of this real data
is unknown. We then treat the PMLE computed based on the
whole network data (given in the previous paragraph) as if it
were the true parameter. This gives us ρ = 0.154. We are able

Table 1. Simulation results for PMLE with n/N = 10%

ρ = 0.2 ρ = 0

N n 
 SE ŜE ERP 
 SE ŜE ERP

1,000 100 0.0218 0.5391 0.5471 5.60% 0.0165 0.5357 0.5471 4.30%
5,000 500 0.0035 0.2452 0.2387 13.40% 0.0041 0.2390 0.2387 4.20%

10,000 1000 0.0012 0.1647 0.1639 21.60% 0.0011 0.1603 0.1639 4.20%
100,000 10,000 0.0003 0.0537 0.0521 95.90% 0.0002 0.0532 0.0521 5.40%
500,000 50,000 0.0001 0.0237 0.0232 100.0% 0.0001 0.0232 0.0232 4.40%

http://www.weibo.com
http://www.ctrip.com
http://www.elong.com
http://www.qunar.com
http://www.qunar.com
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Table 2. The real data simulation results for PMLE with
N = 557,818 and ρ = 0.154

n 
 SE ŜE ERP

2000 0.0274 0.5139 0.4728 7.5%
5000 0.0093 0.1743 0.1727 15.8%
10,000 0.0037 0.0907 0.0853 47.6%
20,000 0.0026 0.0451 0.0426 94.1%
50,000 0.0009 0.0189 0.0170 100.0%

to do this because the sample size considered subsequently is
considerably smaller than the network size N = 557,818. The
detailed results are given in Table 2. However, it should be
noted that the interpretation of SE in Table 2 should be slightly
different from that of Table 1 in Section 3.2. The reason is the
following. For this real data based simulation study, the response
values are fixed for each node across different simulation itera-
tions. The randomness due to response value regeneration was
not involved. Consequently, the randomness of PMLE is fully
due to sampling. As a result, the SE values reported in Table 2
should be interpreted as a standard error measure for ρ̂ when
only sampling randomness is involved. Then, the ERP values in
Table 2 should be interpreted similarly. By Table 2, we find that,
to have about 95% power (i.e., ERP≈ 95%), only n = 20, 000
nodes need to be sampled. It accounts for about n/N = 3.59%
of the entire network size.

4. CONCLUSION

We investigate here the problem of spatial autocorrelation
estimation based on sampled network data. To capture spatial
autocorrelation, the classical spatial autoregression model is
considered. We find that the exact maximum likelihood esti-
mator for the sampled data is practically infeasible when the
network size is large. To fix the problem, a novel approximation
method was proposed, leading to the method of AMLE, which
further inspires the development of the PMLE method. These
findings are also confirmed by numerical studies. We further
illustrate our methods by a real dataset about Sina Weibo. Sig-
nificant spatial autocorrelation in terms of posting activity is
detected.

To conclude the article, we discuss here a number of inter-
esting topics for future study. First, the spatial autoregression
model (2.1) considers only those directly connected nodes for
autoregression. Instead, empirical research provides evidence
that those indirectly connected ones might also have impact on
each other. Naturally, this calls for spatial autoregression models
with higher order neighbors. Approximation of the likelihood
in this general setup is a nontrivial extension of our proposed
method and deserves a separate study. Second, by our theoretical
analysis, the quantity ωn determines the asymptotic efficiency
and its value can be much improved by SNOW. However, how
much SNOW can be further improved is not clear. Third, as
in the literature of spatial statistics and econometrics, the cur-
rent model assumes that the adjacency matrix (therefore the
weight matrix) is pre-determined before the response is gener-
ated. However, in many cases the adjacency matrix is endoge-

nously determined, because nodes sharing common features are
more likely to be connected. Then, how to model this endoge-
nous phenomenon is another important topic deserved further
investigation.

APPENDIX

Appendix A. A Useful Lemma

To establish the asymptotic normality for PMLE, we need a central
limit theorem for normal quadrature. We thus first state and prove a
useful lemma in this regards.

Lemma A.1. Let ε = (ε1, . . . , εn)� ∈ R
n be a n-dimensional stan-

dard normal random vector. Let Q = (qij ) ∈ R
n×n be a symmetric ma-

trix satisfying that λmax(Q) ≤ cmax and n−1tr(Q2) > cmin as n → ∞,
for some positive constants cmax > 0 and cmin > 0. DefineQn = ε�Qε,
then {Qn − tr(Q)}/tr1/2(2Q2) →d N (0, 1) as n → ∞.

Proof. Because Q ∈ R
n×n is a symmetric matrix. There exists an

orthonormal matrix U ∈ R
n×n (i.e., U�U = UU� = I ), such that

Q = U�DU with D = diag{λ1, . . . , λn} being a diagonal matrix. We
then haveQn = ε�Qε = Z�DZ = ∑

λiZ
2
i , where Z = (Zi) = Uε ∈

R
n and Zis are independent standard normal random variables. We

know immediately E(Qn) = ∑
λi = tr(Q) and var(Qn) = 2

∑
λ2

i =
2tr(Q2) ≥ 2ncmin. Furthermore, we know that

∑
E(λiZ

2
i − λi)4 =

(
∑

λ4
i )E(Z2

i − 1)4 = E(Z2
i − 1)4tr(Q4) ≤ E(Z2

i − 1)4(nc4
max). Con-

sequently, we know that
∑

E(λiZ
2
i − λi)4/{var(Qn)}2 → 0 as n →

∞. This verifies the Lyapunov condition. As a result, the central limit
theorem can be established, i.e., {Qn − tr(Q)}/tr1/2(2Q2) →d N (0, 1)
as n → ∞. This proves the lemma conclusion. �

Appendix B. Proof of Theorem 1

We are going to establish the theorem in three steps. In the first
step, we show that ρ̂p is asymptotically unbiased. In the second step,
we obtain its asymptotic variance. Finally, we establish the asymptotic
normality in Step 3.

Step 1 (Bias). Recall Y = (I − ρW )−1ε. In the meanwhile, by
Banerjee, Carlin, and Gelfand (2004) we know that λmax(W ) ≤ 1.
Furthermore, due to constraint |ρ| < 1, we can obtain Y = (I +∑∞

k=1 ρkWk)ε. Write Wk = (w(k)
ij ). We then have

w
(k)
ij =

∑
s1s2 ···sk−1

(
ai1s1

di1

)(
as1s2

ds1

)
· · ·

(
ask−2sk−1

dsk−2

) (
ask−1j

dsk−1

)
.

Then, for any sampled node 1 ≤ i ≤ n, we should have Yi = εi +∑∞
k=1 ρk

∑N

j=1 w
(k)
ij εj = εi + ∑N

j=1 εj (
∑∞

k=1 ρkw
(k)
ij ). Consider two ar-

bitrarily sampled nodes i and j, then

σ−2E(YiYj ) =
∞∑

k=1

ρk
(
w

(k)
ij + w

(k)
ji

)
+

∑
s

( ∑
k≥1

ρkw
(k)
is

)( ∑
k≥1

ρkw
(k)
js

)

= ρdij +
∞∑

k=2

ρk
(
w

(k)
ij + w

(k)
ji

)
+

∑
k1,k2≥1

ρk1+k2

( ∑
s

w
(k1)
is w

(k2)
js

)
.
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Therefore, we have
∑

ij E(YiYj )dij = ρ
∑

i,j≤n d2
ij + O1. HereO1 ≥ 0

is a nonnegative quantity given by

O1 =
∑
i,j≤n

dij

∞∑
k=2

ρk
(
w

(k)
ij + w

(k)
ji

)

+
∑
i,j≤n

dij

∑
k1,k2≥1

ρk1+k2

( ∑
s

w
(k1)
is w

(k2)
js

)

≤ 2
∑
i,j≤n

∞∑
k=2

ρk
(
w

(k)
ij + w

(k)
ji

)

+2
∑
i,j≤n

∑
k1,k2≥1

ρk1+k2

( ∑
s

w
(k1)
is w

(k2)
js

)
,

because dij ≤ 2 and all other involved quantities are nonnegative. We
can then further write the right-hand side of the above inequality as

= 2
∞∑

k=2

ρk
∑
i,j≤n

(
w

(k)
ij + w

(k)
ji

)
+ 2

∑
k1,k2≥1

ρk1+k2
∑
i,j≤n

( ∑
s

w
(k1)
is w

(k2)
js

)

= 4
∑
k≥2

ρk‖Wk‖(n) + 2
∑

k1,k2≥1

ρk1+k2‖Wk1,k2‖(n).

By (A2), the right-hand side of the above equality can be further
bounded by

≤ 4	max

∑
k≥2

ρk + 2	max

∑
k1,k2≥1

ρk1+k2

= 4	max

(
ρ2

1 − ρ

)
+ 2	max

( ∑
k≥1

ρk
)2

= 4	max

(
ρ2

1 − ρ

)
+ 2	max

(
ρ

1 − ρ

)2

=
(
	maxρ

2
)

· O(1).

Recall ρ̂p = (
∑

1≤i,j≤n dijYiYj )/(
∑

i,j d2
i,j ). We thus have E(ρ̂p) =

ρ + o(n−1/2) by Conditions (A1) and (A2).
Step 2 (Variance). Write W = (W11 + W�

11). One can then verify
that ρ̂p = Y

�
1 WY1/tr(W2). Consequently, we know that var(ρ̂p) =

var(Y�
1 WY1)/tr2(W2). As a result, the key is to obtain an analyti-

cally tractable formula for var(Y�
1 WY1). To this end, recall that Y =

(I − ρW )−1ε = ∑
k≥0 ρkWkε. Consequently, Y1 = ∑

k≥0 ρk(Wk)(n)ε,

where (Wk)(n) = (w(k)
ij : 1 ≤ i ≤ n, 1 ≤ j ≤ N ) ∈ R

n×N . We can then
write Y

�
1 WY1 = ε�

Mε, where

M =
{ ∑

k≥0

ρk(Wk)�(n)

}
W

{ ∑
k≥0

ρk(Wk)(n)

}
.

Because σ−1ε follows a multivariate standard normal distribution,
Y

�
1 WY1 is distributed as a weighted chi-square and its variance is

given by 2σ 4tr(M2). We next compute tr(M2). Direct algebra reveals
that

tr(M2) =
∑

k1,k2,k3,k4≥0

ρk1+k2+k3+k4 tr

×
{

(Wk1 )�(n)W(Wk2 )(n)(W
k3 )�(n)W(Wk4 )(n)

}
= tr(W2) +

∑
k1+k2+k3+k4≥1

ρk1+k2+k3+k4 tr

×
{

(Wk1 )�(n)W(Wk2 )(n)(W
k3 )�(n)W(Wk4 )(n)

}
.

As a result, we can write tr(M2) = tr(W2) + O2, where

O2 =
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4 tr

×
{

(Wk1 )�(n)W(Wk2 )(n)(W
k3 )�(n)W(Wk4 )(n)

}

Note that W = (dij ) = (aij /ni + aji/nj ) ∈ R
n×n with 0 ≤ dij ≤ 2 for

any 1 ≤ i, j ≤ n. On the other side, all the components involved in Wk

are positive for any k > 0. This implies that the right-hand side of the
above quality can be bounded by

≤ 4
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4 tr
{

(Wk1 )�(n)(W
k2 )(n)(W

k3 )�(n)(W
k4 )(n)

}

= 4
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4 tr
{

(Wk2 )(n)(W
k3 )�(n)(W

k4 )(n)(W
k1 )�(n)

}
.

(6)
Because the components involved in W are all nonnegative, we have

tr
{

(Wk2 )(n)(W
k3 )�(n)(W

k4 )(n)(W
k1 )�(n) ∈ R

n×n
}

≤ tr
{

(Wk2 )(n)(W
k3 )�(Wk4 )(Wk1 )�(n) ∈ R

n×n
}
. (7)

Note that (Wk2 )(n)(Wk3 )�(Wk4 )(Wk1 )�(n) ∈ R
n×n happens to be the

corresponding submatrix of Wk1,k2,k3,k4 = Wk2 (Wk3 )�Wk4 (Wk1 )� ∈
R

N×N . Once again, because the components of W are all nonnega-
tive, we have the trace in (A.2) is bounded by ‖Wk1,k2,k3,k4‖(n). This
suggests that the right hand side of (A.1) can be bounded by

≤ 4
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4‖Wk1,k2,k3,k4‖(n)

≤ 4	max

∑
k1+k2+k3+k4≥1

ρk1+k2+k3+k4 ≤ 4	max

(
1

1 − ρ

)4

= o(n1/2),

by technical condition (A2). On the other hand, by (A1) we
know that tr(W2) is of the order n. Consequently, we know
that tr(M2) = tr(W2) + o(n1/2) = tr(W2){1 + o(n1/2)tr−1(W2)} =
tr(W2){1 + o(n−1/2)} = tr(W2){1 + o(1)}. This further implies that
var(ρ̂p) = tr−1(W2){1 + o(1)}.

Step 3 (Asymptotic Normality). Recall ρ̂p = Y
�
1 WY1/tr(W2). As

a result, its asymptotic normality is fully determined by Y
�
1 WY1. One

can easily verify that λmax(W) ≤ 2λmax(W11) ≤ 2λmax(W ) ≤ 2. By as-
sumption (A1), we have n−1tr(W2) = n−1

∑
d2

ij = ωn → ω > 0. As a

result, we have {ρ̂p − E(ρ̂p)}var−1/2(ρ̂p)
d→ N (0, 1) by Lemma 1. This

completes the entire theorem proof.
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