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Abstract: We propose a novel procedure for estimating the mean function of

longitudinal imaging data with inherent spatial and temporal correlation. We

depict the dependence between temporally ordered images using a functional moving

average, and use flexible bivariate splines over triangulations to handle the irregular

domain of images which is common in imaging studies. We establish both the global

and the local asymptotic properties of the bivariate spline estimator for the mean

function, with simultaneous confidence corridors (SCCs) as a theoretical byproduct.

Under some mild conditions, the proposed estimator and its accompanying SCCs

are shown to be consistent and oracle efficient, as though all images were

entirely observed without errors. We use Monte Carlo simulation experiments to

demonstrate the finite-sample performance of the proposed method, the results of

which strongly corroborate the asymptotic theory. The proposed method is further

illustrated by analyzing two seawater potential temperature data sets.

Key words and phrases: Bivariate splines, spatiotemporal, imaging data, oracle

efficiency, simultaneous confidence corridor

1. Introduction

Imaging data are generated by decomposing an image into many small

areas, called pixels, with a value used to express its gray scale. Longitudinal

imaging data, collected from a series of repeated observations of the same

subject over some extended time frame, frequently appear in the fields of

medicine, meteorology, geography, and environmental science, for example

continuous observations of tomography imaging or remote sensing images.

Analyses of longitudinal imaging data provide new opportunities for detecting

the dynamic changes in one subject over time, but are complicated by the spatial

correlation between pixels within a single image and temporal correlation between

sequentially ordered images.

The method used most often to anlyze longitudinal imaging data concentrates

on linear regression models with correlated errors. George and Aban (2015)

proposed a linear model with a separable parametric spatiotemporal error

structure. However, although their information criteria are highly accurate in

*Corresponding author.
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(a) (b)

Figure 1. (a) Plots of observation locations (black dots) in the Black Sea; (b)
Triangulation on the Black Sea domain.

terms of choosing spatial and temporal parametric correlation functions, the risk

of model misspecification and poor performance in terms of inference remain

inevitable. George et al. (2016) described how to use the aforementioned model

in practice, and applied it to data from a longitudinal cardiac imaging study.

In the study, a handful of successive images with a small number of spatial

locations were collected daily, monthly, or even yearly, at limited times. Today,

longitudinal imaging data usually comprise orders of magnitude greater numbers

of spatial (thousands of pixels) and temporal (multiple measures per day or

hour) observations. One interesting example is the continued recording of the

surface temperature of the Black Sea. Hourly seawater potential temperatures

are recorded on dense regular grids (see Figure 1(a)) every 1/12 degree,

both longitude and latitude, over 360 consecutive hours. This produces 360

sequentially ordered images, each consisting of 6,583 pixels, with four randomly

selected images shown in Figure 2. The ultrahigh dimension of the data is

problematic for unstructured correlation matrices, leading to the traditional

model losing its effect. Therefore, we require a practical, computationally

efficient, and theoretically reliable method for analyzing large-scale longitudinal

imaging data.

Functional data analysis provides a novel and powerful approach to dealing

with imaging data. Instead of imposing a spatial structure directly, it views

imaging data as realizations of random fields, which naturally captures the

spatial correlations between pixels. French and Kokoszka (2020) developed

a spatiotemporal sandwich smoother based on radial basis functions and B-

splines to fit large spatiotemporal data sets. They include a time dimension

in the smoother, which causes additional computational complexity and a failure

to derive the global mean surface. Furthermore, statistical inferences cannot

be conducted, owing to a lack of theory. Kokoszka and Reimherr (2019)
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(a) 00:30 on December 9, 2020
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(b) 17:30 on December 12, 2020
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(c) 12:30 on December 17, 2020
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(d) 09:30 on December 20, 2020

Figure 2. Four randomly sampled images for the hourly surface temperature of the Black
Sea.

reviewed recent developments related to inferences for functions defined at spatial

locations. They consider time series of functions defined at irregularly distributed

spatial points or on a grid, namely, spatially indexed functional time series.

In contrast to their research, we focus on temporally indexed images, that is

longitudinal imaging data with higher dimensions and more complex structures.

From the perspective of functional data analysis, longitudinal imaging data

consist of a collection of n temporally ordered images {ηt(·)}nt=1 on a two-

dimensional (2D) bounded domain Ω, where Ω can be divided into several disjoint

convex sets, and the tth image ηt(·) is a continuous stochastic field, equal in

distribution to a standard field η(·). However, the actual observed data are

discrete values of a regular grid of pixels from the fields {ηt(·)}nt=1, plus random

errors. Because most imaging data are recorded by automated instruments, we
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(a) (b)

Figure 3. (a) Plots of observation locations (black dots) in the Madagascar surrounding
sea; (b) Triangulation on the Madagascar surrounding sea domain.
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Figure 4. The Black Sea spatial domain (blue surface) for validation metrics.

assume the pixel locations are dense regular grids xij ∈ Ω, for i = 1, . . . ,M ,

j = 1, . . . , Ni, which forms an M -row array with Ni points in the ith row, see

Figure 1(a) and Figure 3(a). A similar data setting is considered by Yu et al.

(2021). Let Yt,ij = Yt (xij) be the observation of the tth image at location xij .

Then the data set {(Yt,ij ,xij)}, for t = 1, . . . , n, i = 1, . . . ,M , j = 1, . . . , Ni, can

be modeled as

Yt,ij = ηt (xij) + σ (xij) εt,ij , (1.1)

where εt,ij are independent and identically distributed (i.i.d.) random errors with

mean zero and variance one, and σ2(·) is the variance function of the measurement

errors.
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In longitudinal imaging data analysis, a fundamental issue lies in estimating

the of mean function m (·), defined as m (·) = E{η(·)}. One challenge is that lots

of imaging data are collected over complicated domains, even with gaps and holes

(see Figure 4), leading to the problem of “leakage” across complex boundaries

for some traditional smoothing methods, such as tensor product smoothing,

kernel smoothing, and wavelet smoothing. Bivariate splines on triangulations,

introduced in Lai and Schumaker (2007), are effective in overcoming the poor

boundary estimation, and preserve important features (shape and smoothness)

of the imaging data. Any 2D geometric domain can be represented as a polygon

that is decomposed into triangles using triangulation. Bivariate splines are widely

used, owing to their computational ease and convenient representation, with

flexible degrees and various smoothness; see Lai and Wang (2013), Zhou and Pan

(2014), and Ferraccioli et al. (2021) for applications in various statistical areas.

Wang et al. (2020) proposed a consistent mean function estimator for imaging

data, based on bivariate splines over triangulations. One serious limitation is

that they restrict images {ηt(·)}nt=1 to be i.i.d. copies, which is not the case in

longitudinal imaging data. To model the time-ordered dependent images, we

embed the de-meaned stochastic fields ξt(·), defined as ξt(·) = ηt(·) −m(·), into
the functional moving average infinity, or FMA(∞) series {ξt(·)}∞t=1, as in Li and

Yang (2023). Specifically, ξt(·) satisfies the following equation:

ξt (·) =
∞∑

t′=0

At′ζt−t′ (·) , t = 0,±1,±2, . . . (1.2)

where At′ are bounded linear operators L2 (Ω) → L2 (Ω), playing the role of

scalar coefficients in the classic MA(∞), and {ζt(·)}∞t=−∞ are orthonormal zero-

mean stochastic fields, called strong functional white noise by Bosq (2000). Note

that the classic MA(∞) is a broad category, and includes the widely used causal

ARMA(p, q), and thus the AR(p) and MA(q) as special cases. In fact, many

stationary functional time series can be approximated by m-dependent series in

the L2 sense.

Under the above dependence structure, we propose a bivariate spline

estimator for the mean function m (·). Theorem 2 states that the bivariate

spline estimator is asymptotically equivalent to the infeasible “oracle” estimator,

obtained as if all images were totally observed, without measurement errors. This

oracle efficiency allows us to construct an asymptotically correct simultaneous

confidence corridor (SCC) of the mean functionm (·), under some mild conditions.

The SCC is vital for evaluating the variability and testing the global behavior of

functions; see Cao et al. (2016), Cao, Yang and Todem (2012), Choi and Reimherr

(2017), Gu et al. (2014), Gu and Yang (2015), Ma, Yang and Carroll (2012), Wang

et al. (2020), and Yu et al. (2021) for related theory and applications. The results

of our simulation studies suggest that the proposed SCC is computationally
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efficient, with the correct coverage frequency for finite samples.

The rest of the paper is organized as follows. Section 2 describes the

functional moving average model and bivariate spline estimator for the mean

function. Section 3 states our main theoretical results for the SCC constructed

from a bivariate spline estimator. In Section 4, we discuss procedures for

implementing the proposed SCC, and in Section 5, we present the findings of

our extensive simulation studies. In Section 6, we apply the proposed method

to two hourly seawater potential temperature data sets. All technical proofs and

some additional simulation results are included in the Supplementary Material.

2. Model and Estimation Method

2.1. Functional moving average model

Denote the covariance function of η(·) as G(x,x′) = Cov {η(x), η (x′)}, for
x,x′ ∈ Ω. The identically distributed random fields {ηt(·)}nt=1 are decomposed

as ηt(·) = m(·) + ξt(·), where each ξt(x) can be viewed as a small-scale

variation of x on the tth image, and is assumed to be a strictly stationary

L2 process, with Eξt(x) = 0 and covariance G(x,x′) = Cov {ξt(x), ξt (x′)}, for
x,x′ ∈ Ω. Mercer’s lemma entails the decomposition of its covariance function

G(x,x′) =
∑∞

k=1 λkψk(x)ψk(x
′), where {λk}∞k=1 are a series of decreasing positive

eigenvalues, and {ψk(·)}∞k=1 are the corresponding eigenfunctions, forming an

orthogonal basis of L2(Ω), such that
∑∞

k=1 λk < ∞ and
∫
G(x,x′)ψk(x

′)dx′ =

λkψk(x).

Then, for any t ∈ Z, the zero-mean field ξt(x), for x ∈ Ω, allows the general

Karhunen–Loève representation ξt(x) =
∑∞

k=1 ξtkϕk(x), in which the rescaled

eigenfunctions {ϕk(·)}∞k=1, called functional principle components (FPC), satisfy

ϕk =
√
λkψk and

∫
{η(x) − m(x)}ϕk(x)dx = λξk, for k ≥ 1. The random

coefficients ξtk are uncorrelated over k, with mean zero and variance one, referred

to as FPC scores. Note that although the sequences {λk}∞k=1 and {ϕk(·)}∞k=1 do

exist in mathematics, they are unknown and unobservable in practice; a detailed

estimation procedure is given in Section 4.

To make the FMA(∞) model better fit the data structure, the operators At′

are assumed to be of diagonal form

At′

{
∞∑
k=1

ckϕk(·)
}

=
∞∑
k=1

at′kckϕk(·), at′k ∈ R, k = 1, 2, . . . , t′ = 0, 1, . . .

with arithmetically decaying MA coefficients |at′k| < Cat
′ρa , for constants Ca > 0

and ρa ∈ (−∞,−1), which is a rather loose requirement. The strong functional

white noise {ζt(·)}∞t=−∞ allows for its own Karhunen–Loève representation ζt (·) =∑∞
k=1 ζt,kϕk(·), where {ζt,k}∞,∞

t=−∞,k=1
are uncorrelated random variables with mean
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zero and variance one. Together with (1.2), we have

ξt (·) =
∞∑

t′=0

At′

{
∞∑
k=1

ζt−t′,kϕk(·)
}

=
∞∑

t′=0

∞∑
k=1

at′,kζt−t′,kϕk(·)

=
∞∑
k=1

(
∞∑

t′=0

at′,kζt−t′,k

)
ϕk(·). (2.1)

Note that because ξt(·) =
∑∞

k=1 ξtkϕk(·) absolutely almost surely, by the

Karhunen–Loève expansion, it follows that the FPC score ξtk =
∑∞

t′=0 at′kζt−t′,k

almost surely. To ensure that ξtk has variance one, we assume
∑∞

t=0 a
2
tk ≡ 1,

for k = 1, 2, . . . , which is reasonably analogous to what is assumed in numerical

MA(∞).

In summary, for 1 ≤ t ≤ n, 1 ≤ i ≤ M , and 1 ≤ j ≤ Ni, the raw data

{(Yt,ij ,xij)} of FMA(∞) can be written as

Yt,ij = m (xij) + ξt (xij) + σ (xij) εt,ij

= m (xij) +
∞∑
k=1

ξtkϕk (xij) + σ (xij) εt,ij , (2.2)

where, for 1 ≤ t ≤ n, k = 1, 2, . . .,

ξt (·) =
∞∑
k=1

ξtkϕk (·) , ξtk =
∞∑

t′=0

at′kζt−t′,k a.s. (2.3)

2.2. Bivariate spline estimator

Had the n images {ηt(·)}nt=1 been entirely observed over Ω, an intuitive

estimator for the mean function m (·) in (2.2) would be the sample mean

m (x) = n−1
n∑

t=1

ηt(x), x ∈ Ω, (2.4)

which is infeasible because of the finite pixel grids and measurement errors.

However, it does suggest that we can replace the unobservable ηt (·) with some

suitable estimator η̂t (·), and obtain the plug-in estimator m̂(·) = n−1
∑n

t=1 η̂t (·).
We use bivariate splines that are piecewise polynomial functions over a 2D

triangulated domain to approximate each image ηt (·). In the following, we

briefly introduce some elementary knowledge about triangulation techniques and

bivariate splines.

Triangulation is used to process data distributed over difficult domains with

complex boundaries and/or interior holes. Denote by T a triangle that is a convex

hull of three points, not located in one line. A triangulation of Ω is a collection of

H triangles △ = {T1, . . . , TH}, with Ω =
⋃H

h=1 Th, provided that any nonempty



962 HU AND LI

intersection between a pair of triangles in △ is either a shared vertex or a shared

edge. Given a triangle T ∈ △, let |T | be its longest edge length, and ρT be the

radius of the largest disk inscribed in T . The shape parameter of T is defined as

the ratio πT = |T |/ρT . When πT is small, the triangles are relatively uniform, in

the sense that all angles of the triangles in △ are relatively the same. Denote the

size of △ by |△| = max{|T |, T ∈ △}, that is, the length of the longest edge of all

triangles in △.

For any triangle T ∈ △ and any fixed point x ∈ Ω, let b1, b2, and b3 be

the barycentric coordinates of x relative to T . The Bernstein basis polynomials

of degree d relative to triangle T are defined as BT,d
ijk (x) = (i!j!k!)−1d!bi1b

j
2b

k
3 ,

i + j + k = d, and are used to represent the bivariate splines. For an integer

r ≥ 0, let Cr(Ω) be the collection of all rth continuously differentiable functions

over Ω. Given △, let Sr
d (△) = {s ∈ Cr(Ω), s|T ∈ Pd(T ), T ∈ △} be a spline

space of degree d and smoothness r over △, where s|T is the polynomial piece of

spline s restricted on triangle T , and Pd is the space of all polynomials of degree

less than or equal to d. Bivariate splines on the triangulation T are piecewise

polynomials defined on T satisfying additional smoothness conditions that the

derivatives up to certain a degree are continuous.

Let {Bℓ}pℓ=1 be the set of degree-d bivariate Bernstein basis polynomials for

Sr
d(△) and the vector B (xij) = {B1 (xij) , . . . , Bp (xij)}⊤. Denote by X the

evaluation matrix of the Bernstein polynomial basis. Then X can be written as

X = {B (x11) , . . . ,B (x1N1
) , . . . ,B (xMNM

)}⊤ =
[
{B(xij)}M,Ni

i=1,j=1

]⊤
. (2.5)

The tth unknown random field ηt (x) can be estimated using bivariate splines

by ηt (x) = B⊤ (x)γt, where γ⊤
t = (γt1, . . . , γtp) is the spline coefficient vector.

We show that the smoothness constraint in the derivative can be expressed as

a linear equation system on the coefficient vector γt: Hγt = 0, where H is a

(p−p0)×p matrix determined by the smoothness constraints, p0 is the dimension

of Pd(T ), and p is the dimension of Sr
d(△). For a more detailed description of

H, refer to Section B.2 of the Supplementary Material of Yu et al. (2020). Thus,

ηt (x) is obtained by the solving the following least squares problem:

η̂t(x) = argmin
g(·)∈Sr

d(△)

M∑
i=1

Ni∑
j=1

{Yt,ij − g (xij)}2 , (2.6)

subject to Hγt = 0.

To remove the constraint, we consider the QR decomposition of H⊤: H⊤ =

QR = (Q1Q2)
(
R1

R2

)
, where Q is orthogonal and R is upper triangular, and the

submatrix Q1 is the first m columns of Q, where m is the rank of H, and R2 is

a matrix of zeros. The constraint Hγt = 0 can be ensured by reparametrizing

γt = Q2βt for some βt. Then, the minimization problem is converted to a
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conventional unrestricted problem

M∑
i=1

Ni∑
j=1

{Yt,ij −B (xij)Q2βt}2 . (2.7)

Denote B̃(x) = Q⊤
2 B(x), X̃ = XQ2, and Yt = ({Yt,ij}M,Ni

i=1,j=1
)⊤. Applying

elementary algebra, the solution is given by β̂t = (X̃⊤X̃)−1X̃⊤Yt, γ̂t = Q2β̂t.

Thus, the estimator of ηt(·) is η̂t(x) = B̃(x)⊤(X̃⊤X̃)−1X̃⊤Yt, and one can

estimate the unknown mean function m (·) as

m̂(·) = n−1
n∑

t=1

η̂t (·) . (2.8)

3. Main Results

3.1. Technical assumptions

Suppose that Ω is a bounded domain in R2. For any function g over Ω, denote

by ∥g∥∞,Ω = supx∈Ω |g(x)|. For d ≥ 0, the associated Sobolev space is defined by

functions with

W d,∞ (Ω) = {g : |g|k,∞,Ω < ∞, 0 ≤ k ≤ d} ,

where |g|k,∞,Ω = maxν+µ=k ∥Dν
xD

µ
y g∥∞,Ω and Dν

xg represents the νth partial

derivative of g with respect to the variable x. In addition, denote a class of Lip-

schitz continuous functions by Lip (Ω, L) = {g(x) : |g(x)− g(x′)| ≤ L |x− x′| ,
∀x,x′ ∈ Ω, L > 0}.

To study the asymptotic properties of the bivariate spline estimator m̂ (·),
we need the following technical assumptions:

(A1) The mean function m(·) ∈ Wd+1,∞ (Ω), for some integer d ≥ 1.

(A2) The standard deviation function of the measurement errors σ(·) ∈
Lip (Ω, L), for some L > 0, and there exist some positive constants Mσ, cG,

and CG, such that supx∈Ω |σ(x)| ≤ Mσ, cG ≤ G(x,x) ≤ CG,x ∈ Ω.

(A3) There exists a constant θ > 0, such that as N → ∞, n = n (N) → ∞,

n = O
(
N θ

)
.

(A4) For k ≥ 1, ϕk(·) ∈ Wd+1,∞ (Ω), with
∑∞

k=1 |ϕk|d+1,Ω,∞ < +∞ for some

integer d ≥ 1; for increasing positive integers {kn}∞n=1, as n → ∞,∑∞
kn+1 ∥ϕk∥∞,Ω = O(n−1/2),

∑kn

k=1 |ϕk|d+1,Ω,∞ |△|d+1
= O(1), and kn =

O (nα), for some α > 0.

(A5) There exist constants C0, C1, C2 ∈ (0,+∞), γ1, γ2 ∈ (1,+∞), β1 ∈ (0, 1/2),

β2 ∈ (0, ω), In ≍ nι with max{(−α − 3)/(2ρa + 1),−(2r1 − 2β1r1 + 4 +

α)/r1ρa} < ι < 1, where an ≍ bn means an and bn are asymptotically



964 HU AND LI

equivalent, and i.i.d. N (0, 1) variables {Ztk,ζ}n,kn

t=−In+1,k=1
, {Zt,ij,ε}n,M,Ni

t=1,i=1,j=1,

such that

P

{
max

1≤k≤kn

max
−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζtk −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣ > C0n
β1

}
< C1n

−γ1 ,

P

{
max
1≤t≤n

max
1≤τ≤N

∣∣∣∣∣
τ∑

k=1

εt,f1(k)f2(k) −
τ∑

k=1

Zt,f1(k)f2(k),ε

∣∣∣∣∣ > Nβ2

}
< C2N

−γ2 ,

where f1, f2 are functions Z+ → Z+ with the following property:

∥∥xf1(x)f2(x) − xf1(y)f2(y)

∥∥
2
= O(N−1/2), (∗)

where x, y ∈ {1, . . . , N}, |x−y| ≤ 1, f1(1) = 1, f1(N) = M, f2(1) = 1 or N1,

and f2(N) = 1 or NM .

(A5′) The i.i.d. variables {εt,ij}n,M,Ni

t=1,i=1,j=1 are independent of {ζtk}n,∞t=1,k=1. The

number of distinct distributions for the FPC score white noise {ζtk}n,∞t=1,k=1

is finite. There exist constants r1 > 4 + 2α, r2 > (2 + θ)/ω, such that for

1 ≤ t ≤ n, 1 ≤ i ≤ M, 1 ≤ j ≤ Ni, and 1 ≤ k ≤ ∞, Eξr1tk + Eεr2t,ij < ∞.

(A6) The triangulations are π-quasi-uniform; that is, there exists a positive

constant π such that (minT∈△ ρT )
−1 |△| ≤ π. The smoothness parameter r

satisfies d ≥ 3r+2 for d in Assumption (A1). The size of the triangulations

|△| satisfies |△|−1
= NγdN , for some γ > 0, with dN + d−1

N = O
(
logϑ N

)
,

for some ϑ > 0 as N → ∞, and for d in Assumption (A1), θ in Assumption

(A3), β2 in Assumption (A5), and r1 in Assumption (A5′),

θ

d+ 1

(
2

r1
+

1

2

)
< γ <

1

2
− θ

2
− β2.

A few comments on the regularity conditions are in order. Assumption (A1) is

typical for bivariate spline smoothers in the nonparametric estimation literature,

and controls the size of the bias of the estimator for m(·), and can be relaxed by

requiring only m(·) ∈ C0(Ω) if the imaging data have sharp edges; see Wang et

al. (2020). Assumption (A2) ensures that variance function should be uniformly

bounded. Assumption (A3) requires that sample size n grows not faster than the

power θ of the number N of pixels per image. The collective bounded smoothness

of the principal components is provided in Assumption (A4). Assumption (A5)

presents a strong approximation for the estimation errors and the strong white

noise {ζt(·)}∞t=−∞, which can be guaranteed by a more elementary Assumption

(A5′). Assumption (A6) suggests using more uniform triangulations with smaller

shape parameters, and specifies the size of the triangulations.
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Remark 1. The assumptions above are quite mild and satisfied easily in many

practical situations. One simple and reasonable setup for the parameters d, θ, ω,

γ, and dN is as follows: d = 5, θ = 1/4, ω = 1/6, γ = 3/16, and dN = log logN .

These constants are used as defaults in our implementation, in Section 4.

Remark 2. The pixel locations {xij}M,Ni

i=1,j=1 can be relaxed to vary over

subjects (namely, time) as {xt,ij}n,Mt,Nti

t=1,i=1,j=1, as long as the dense condition (∗)
in Assumption (A4) is replaced with min1≤t≤n

∥∥xt,ft,1(x)ft,2(x) − xt,ft,1(y)ft,2(y)

∥∥
2
=

O(N−1/2), with corresponding functions ft,1, ft,2, for t = 1, . . . , n. In this

scenario, the main theoretical results, including Theorem 1 and Theorem 2, still

hold, because the order of the smoothing bias does not change. However, in

implementation, the evaluation matrix X varies over subjects, making it difficult

to compute the spectral decomposition of Gφ(x,x
′) defined in (3.1), because

Gφ(x,x
′) cannot be simplified as (4.2). Moreover, the triangulation selection

should be conducted over each image under the setting of varying pixel locations,

causing an additional heavy computational burden. Therefore, we assume the

longitudinal imaging data are collected at the same locations over time, without

loss of generality.

Remark 3. From Assumptions (A3) and (A6), the upper bound of θ is θ <

(d+2)/(3+d) < 1, which implies that the number of pixelsN in each image should

not be much smaller than the sample size n. This is quite different from the sparse

setting considered in Zheng, Yang and Härdle (2014), where the convergence rate

is (nh)−1/2 with the bandwidth h → 0, which is slower than n−1/2. Under our

dense setting, where N tends to infinity, we first smooth over each image, and

then take the average to estimate the mean function. To control the error brought

by smoothing and to maintain the convergence rate n−1/2, we impose additional

requirements on other parameters, which guarantees that smoothing over each

image has a negligible effect. However, under the sparse functional data setting,

where the number of observations in each trajectory has a finite expectation, we

need to pool all observations together to estimate its mean function, leading to

different asymptotic results.

3.2. Asymptotic properties of m̃(x) and m̂(x)

Denote

φ (x) =

∑∞
k=1

∑∞
t=1 atkϕk (x)Uk

Var1/2 {
∑∞

k=1

∑∞
t=1 atkϕk (x)Uk}

, x ∈ Ω,

where {Uk}∞k=1 are i.i.d. N(0, 1) random variables. Then, φ (x) is a Gaussian

process, with Eφ (x) ≡ 0, Eφ2 (x) ≡ 1, x ∈ Ω, and covariance function

Eφ (x)φ (x′) = Gφ (x,x
′) {Gφ (x,x)Gφ (x

′,x′)}−1/2
, x,x′ ∈ Ω,
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where

Gφ (x,x
′) =

∞∑
k=1

ϕk(x)ϕk(x
′)

{
1 + 2

∞∑
t=0

∞∑
t′=t+1

atkat′k

}
, x,x′ ∈ Ω. (3.1)

For any α ∈ (0, 1), define z1−α/2 as the 100 (1− α/2)th percentile of the standard

normal distribution. Denote by Q1−α the 100 (1− α)th percentile of the absolute

maxima distribution of φ (x) over Ω, that is,

P

[
sup
x∈Ω

|φ (x)| ≤ Q1−α

]
= 1− α. (3.2)

The following theorem presents the local and global asymptotic properties of the

infeasible estimator m(·) in (2.4).

Theorem 1. Under Assumptions (A1) and (A3)–(A5), for α ∈ (0, 1), as n → ∞,

the infeasible estimator m(·) converges at the
√
n rate to m(·) with asymptotic

covariance function Gφ (x,x
′), and thus

P
{
sup
x∈Ω

n1/2 |m(x)−m(x)|Gφ (x,x)
−1/2 ≤ Q1−α

}
→ 1− α,

P
{
n1/2 |m(x)−m(x)|Gφ (x,x)

−1/2 ≤ z1−α/2

}
→ 1− α, x ∈ Ω.

Remark 4. The convergence rate n−1/2 in Theorem 1 is optimal. Cai and

Yuan (2011) considered a smoothing spline estimator of the p-times differentiable

mean function when ηt(x) is a univariate process, and showed that its minmax

optimal rate is of order N−p +n−1/2 in the L2-norm. Bosq (2000) found that the

convergence rate of the central limit theorem in functional time series is n−1/2.

Under our setting of a high sampling frequency, the sample size n is controlled

by the number of pixels N , fron Assumptions (A3) and (A6), that is, n ≪ N ,

and thus the optimal rate remains n−1/2, and does not depend on N . That is

also why the uniform convergence rate is the same as the pointwise convergence

rate.

The following theorem shows that the difference between the bivariate-spline

estimator m̂ (·) in (2.8) and the infeasible estimator m (·) is uniformly bounded

at the Op

(
n−1/2

)
rate, which enables us to construct an SCC based on m̂ (·).

Theorem 2. Under Assumptions (A1)–(A6), the bivariate spline estimator m̂ (·)
is oracally efficient, that is, it is asymptotically equivalent to m (·) up to order

Op

(
n−1/2

)
,

sup
x∈Ω

n1/2 |m(x)− m̂(x)| = Op (1) .

Applying the above two theorems, we obtain both a pointwise confidence

interval and an SCC for m (·).
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Corollary 1. Under Assumptions (A1)–(A6), for any α ∈ (0, 1), as n → ∞, an

asymptotic 100 (1− α)% correct confidence corridor for m(·) is

m̂(x)±Gφ (x,x)
1/2

Q1−αn
−1/2, x ∈ Ω, (3.3)

and an asymptotic 100 (1− α)% pointwise confidence interval for m(x) is

m̂(x)±Gφ (x,x)
1/2

z1−α/2n
−1/2, x ∈ Ω.

3.3. Extension to nonlinear processes

Noting that the classic MA(∞) is a rather broad category, the FMA(∞)

in (2.3) can approximate a large class of stationary processes, but is restricted

to linear processes. Thus, it would be worth extending FMA(∞) to nonlinear

functional processes. In what follows, we derive the theoretical extension.

However, in the remainder of the paper, we focus on FMA(∞) for its simple

representation and straightforward theoretical properties.

Rewrite (2.3) as

ξt (·) =
∞∑
k=1

ξtkϕk (·) , ξtk = Fk(ζt,k, ζt−1,k, . . . ) a.s., (3.4)

where Fk, k ∈ N are measurable functions from RZ to R. It is easy to see that

ξt (·) in (3.4) is a nonlinear process with flexible structures. Following Wu (2005),

the physical dependence measure is defined as

∆t,k,r =
∥∥ξtk − ξtk,{0}

∥∥
r
,

where ξtk,{0} is identical to ξtk, except we replace ζ0,k with its i.i.d. copy in (3.4).

The next theorem states the asymptotic properties under a nonlinear process

setting.

Theorem 3. Under Assumptions (A1)–(A6) and (A5’), if α in Assumption (A4)

satisfies α < 1/4 and supk∈N ∆t,k,r1 = ρta, then Theorems 1 and 2 still hold under

the nonlinear functional process setting as (3.4), with the corresponding limiting

covariance function

G∗
φ(x,x

′) =
∞∑
k=1

λ∗
kϕk(x)ϕk(x

′),

where λ∗
k = limn→∞ var (

∑n
t=1 ξtk) /n, k ∈ N, is the long-run variance of ξtk.
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Figure 5. Triangulations on the square domain with K = 3(left), K = 4(median) and
K = 5(right).

Figure 6. Triangulations on the regular 12 polygon domain with K = 3(left), K =
4(median) and K = 5(right).

4. Implementation

4.1. Triangulation selection

Triangulation is crucial because bivariate spline fitting can be sensitive

to the triangulation selection. Lai and Schumaker (2007) recommend several

approaches, such as maxmin-angle triangulations or Delaunay triangulations, but

there is no optimal triangulation method. As Yu et al. (2020) note, enough

triangles are required to present the domain features, but after reaching the

required minimum number of triangles, further increasing the number of triangles

usually makes little difference to the fitting process, even leading to empty

triangles that do not contain any pixels. Thus, we tend to choose a moderate

number, and use the R package Triangulation mentioned in Wang et al. (2020)

to build the triangulated meshes.

Assumption (A6) in Section 3 states that the size of the triangulations |△|
needs to satisfy |△|−1

= NγdN , for some γ > 0, with dN + d−1
N = O

(
logϑ N

)
,

for some ϑ > 0. Most widely used triangulation methods can guarantee this

condition. We recommend |△|−1 = cN3/16 log logN , where c is a tuning constant.

The integer parameter K in the R package Triangulation controls the fineness of

the triangulation and subsequent triangulation. The parameter K also measures

the size of the triangulations, because there exist that K ≍ [|△|−1
], where [a]
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Figure 7. Triangulations on the regular 12 polygon with a square hole domain with
K = 3(left), K = 4(median) and K = 5(right).

denotes the integer part of a, with |△| =
√
2/K under the unit square domain

as a special case. As K increases, the fineness of the triangulation increases. We

suggest selecting K from the integers in
[
0.1N 3/16 log logN,N 3/16 log logN

]
. Of

the triangulations indexed by K, we choose the one with the minimal MISE of

the estimator m̂(·) in (2.8), which is defined as

MISE(K) =

∫

Ω

E {m(x)− m̂(x)}2 dx.

Because the explicit form of MISE(K) is tedious (see Ma (2014)), we propose

computing it using discretization and summation, that is,

MISE(K) =
1

NL

M∑
i=1

Ni∑
j=1

L∑
l=1

{m(xij)− m̂l(xij)}2 ,

where L is the number of pre-simulations, with default value 20. Figures 5 to 7

show triangulations on three different domains (square, regular 12 polygon, and

regular 12 polygon with a square hole), with K = 3, 4, 5.

4.2. Covariance estimation

Denote ξ̂t (x) = η̂t (x) − m̂ (x), for t = 1, . . . , n, x ∈ Ω. To estimate

the covariance function Gφ (x,x
′), we divide {ξ̂t (·)}nt=1 into l groups in order,

where each group has B = [nm] samples, for some constants m > 0 with

l = [n/B]. Noting that Ĝφ (·, ·) is the limit of the covariance function of the

process
√
n {m(·)− m̂(·)}, we use m̂ (x) to mimic m (x) and

√
B δ̂j (x) to mimic

the points from the process
√
n {m(·)− m̂(·)}, where

δ̂j (x) = B−1

Bj∑
k=B(j−1)+1

ξ̂k (x) , j = 1, . . . , l, x ∈ Ω.
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The estimator Ĝφ (x,x
′) of Gφ (x,x

′) is defined as

Ĝφ (x,x
′) =

B

l

l∑
j=1

{
δ̂j (x) δ̂j (x

′)− δ̂ (x) δ̂ (x′)
}
, x,x′ ∈ Ω, (4.1)

where δ̂ (x) = l−1
∑l

j=1 δ̂j (x) ,x ∈ Ω. The next theorem characterizes the

uniform weak convergence of Ĝφ (x,x
′).

Theorem 4. Under Assumptions (A1)–(A6), for a constant m that satisfies

−(1 + 2/r1)/(ρa + 1/2) < m < min{(d+ 1)r1/θ− 4/r1, (1/2− β2 − γ)/θ− 2/r2},
the estimator Ĝφ (x,x

′) of Gφ (x,x
′) is uniformly consistent in probability, that

is,

sup
x,x′∈Ω

∣∣∣Ĝφ (x,x
′)−Gφ (x,x

′)
∣∣∣ = Op (1) .

Throughout this section, we choose B =
[
n1/5 log log n

]
.

4.3. Estimating the percentile

Recalling that the solution of (2.7) is η̂t(x) = B̃(x)⊤β̂t, let β̂ = n−1
∑n

t=1 β̂t.

Then, the bivariate spline estimator m̂(x) = B̃(x)⊤β̂. Denote β̂δj = B−1

∑Bj

k=B(j−1)+1(β̂k − β̂) and the matrix ĝφ = l−1
∑l

j=1(β̂δj β̂
T
δj
) − (l−1

∑l
j=1 β̂δj )

(l−1
∑l

j=1 β̂δj )
T . The covariance function estimator Ĝφ(x,x

′) allows the bivariate

spline expansion as

Ĝφ(x,x
′) = B̃(x)⊤ĝφB̃(x′). (4.2)

For k ≥ 1, we consider the following bivariate spline approximation for the

eigenfunction ψ̂k,φ(x) of Ĝφ(x,x
′): ψ̂k,φ(x) = B̃(x)⊤γ̂k, where γ̂k are coefficients

satisfying N−1γ̂⊤
k X̃

⊤X̃γ̂k = 1. The estimates of the eigenvalues λk,φ and the

corresponding eigenfunctions ψk,φ can be obtained by solving the following

eigenequation: ∫

Ω

Ĝφ(x,x
′)ψ̂k,φ(x

′)dx′ = λ̂k,φψ̂k,φ(x). (4.3)

The next corollary is derived directly from Theorem 4.

Corollary 2. Under the conditions in Theorem 4, the corresponding eigen-pairs

{λ̂k,φ, ψ̂k,φ(x)}, k ∈ N, in (4.3) have uniform consistency in probability, that is,

for k ∈ N,
∣∣∣λ̂k,φ − λk,φ

∣∣∣+ sup
x∈Ω

∣∣∣ψ̂k,φ(x)− ψk,φ(x)
∣∣∣ = Op (1) .

Note that the integration in the eigenequation (4.3) can be approximated

using a discrete summation. Plugging in the covariance function estimator (4.2)

leads to

N−1ĝφX̃
⊤X̃γ̂k = λ̂k,φγ̂k. (4.4)
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To solve the above equation subject to N−1γ̂⊤
k X̃

⊤X̃γ̂k = 1, we use the Cholesky

decomposition, N−1X̃⊤X̃ = LX̃L
⊤
X̃
. Therefore, solving (4.4) is equivalent to

solving L⊤
X̃
ĝφLX̃L

⊤
X̃
γ̂k = λ̂k,φL

⊤
X̃
γ̂k; that is λ̂k,φ and L⊤

X̃
γ̂k are the eigenvalues

and unit eigenvectors, respectively, of L⊤
X̃
ĝφLX̃. Thus, γ̂k can be obtained by

multiplying (L⊤
X̃
)−1 immediately after the unit eigenvectors of L⊤

X̃
ĝφLX̃. After

that, ψ̂k,φ(x) are obtained and ϕ̂k,φ(x) = λ̂
1/2
k,φψ̂k,φ(x). Next, the truncated

number κ of eigenfunctions is chosen using the following efficient criteria, that is,

κ = argmin1≤v≤T{
∑v

k=1 λ̂k,φ /
∑T

k=1 λ̂k,φ > 0.95}, where {λ̂k,φ}Tk=1 are the first T

estimated positive eigenvalues.

We then simulate ζ̂b(x) = Ĝφ(x,x
′)−1/2

∑κ
k=1 Zk,bϕ̂k(x), where {Zk,b}κ,bMk=1,b=1

are i.i.d. standard normal variables, and bM is a preset large integer, with default

value 1,000. We take the maximal absolute value for each copy of ζ̂b(x), and use

the empirical quantile Q̂1−α of these maximum values as an estimate of Q1−α.

Finally, the SCC for the mean function is computed as

m̂(x)± n−1/2Ĝφ (x,x)
1/2

Q̂1−α, x ∈ Ω. (4.5)

5. Simulation Studies

In this section, we perform simulations to illustrate the finite-sample

performance of the proposed method. The data are generated from the following

model:

Yt,ij = m (xij) +
7∑

k=1

ξtkϕk (xij) + σ (xij) εt,ij , t = 1, . . . , n, (5.1)

where xij = (sij , tij) ∈ Ω ⊂ [0, 1]2, for i = 1, . . . ,M , j = 1, . . . , Ni, and
∑M

i=1 Ni =

N . We consider three shapes of the domain Ω: a square, a regular 12 polygon,

which can be viewed as an approximation of a circle, and a regular 12 polygon

with a square hole. The mean function m(·) and eigenfunctions ϕk(·) are set as

follows:

m(s, t) = 6 sin (s+ t) e−2(s+t) + 3s sin t,

φ1 (s, t) = sin

(
πt

2

)
sin

(
3πs

2

)
,

φ2 (s, t) = sin

(
3πt

2

)
sin

(πs
2

)
,

φ3 (s, t) = sin

(
3πt

2

)
sin

(
3πs

2

)
,

φ4 (s, t) = sin

(
5πt

2

)
sin

(
3πs

2

)
,

φ5 (s, t) = sin

(
3πt

2

)
sin

(
5πs

2

)
,
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φ6 (s, t) = sin

(
5πt

2

)
sin

(
5πs

2

)
,

φ7 (s, t) = sin

(
5πt

2

)
sin

(
7πs

2

)
,

φk (s, t) = 0, k ≥ 8.

To guarantee the orthogonality of eigenfunctions, we use Schmidt orthogonaliza-

tion and obtain φ∗
k (s, t), for k = 1, 2, . . . It is obvious that φ∗

k (s, t) = φk (s, t) in

the square domain case, whereas φ∗
k(s, t) is a linear combination of {φk (s, t)}∞k=1

in the other situations. Then, let ϕk(s, t) =
√
λkφ

∗
k(s, t), with λk = 2−(k−1)/2,

and the FPC scores {ξtk}n,7t=1,k=1 are generated from (2.3), where {ζtk}n,7t=−5,k=1 are

i.i.d. N(0, 1) variables and a0k = 0.8, a1k = a2k = 0.4, a3k = a4k = a5k = a6k =

−0.1, and atk = 0, for t ≥ 2, k = 1, . . . , 7.

We generate homoscedastic measurement errors σ(x) = 0.1 and heteroscedas-

tic measurement errors σ(x) = 0.1 (5− exp(−(s+ t))) / (5 + exp (− (s+ t))).

The errors {εt,ij}n,M,Ni

t=1,i=1,j=1
are i.i.d. with normal, uniformm and Laplace dis-

tributions. The number of pixels N is 10,000 and 20,000, respectively, and the

number of images n is taken to be
[
N 1/4 logN(log logN)2

]
.

Throughout this section, the mean function is estimated using bivariate

splines in the space Sr
d (△), with d = 5 and r = 1, which approaches the full

approximation power asymptotically; see Lai and Schumaker (2007). Tables 1

and 2 display the empirical coverage rate, namely, the percentage of the 500

replications of the true mean function m (·) covered by the bivariate spline SCCs

(4.5) at the N points {xij}M,Ni

i=1,j=1
. In both scenarios, the coverage rate of the

SCC becomes closer to the nominal confidence level as the sample size increases,

which is a positive confirmation of the asymptotic theory.

To visualize the SCCs for the mean function, Figures 8 to 16 show the

estimated mean functions and their 95% SCCs for the true mean function m(·),
with σ (x) = 0.1, εt,ij ∼ N(0, 1), and N = 10000, 20000, 40000, respectively, on

the three different domains. As expected, when N increases, the SCC becomes

narrower and the bivariate spline estimators are closer to the true mean function.

In all panels, the true mean function is covered entirely by the upper and lower

corridors.

6. Real-Data Analysis

In this section, we apply the proposed SCCs to two seawater potential

temperature data sets observed on a typically complicated domain. Seawater

potential temperature is an important factor in marine hydrological conditions,

and is often used as a principal indicator when studying the properties and

movement of water masses. Investigating the temporal and spatial distribution

and changing laws related to sea temperature are significant for marine fishing,
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Table 1. Coverage frequencies from 500 replications based on homoscedastic errors
σ (s, t) ≡ 0.1.

Domain Ω
N 10,000 20,000

Distribution of ε normal uniform Laplace normal uniform Laplace

Square

α = 0.10 0.858 0.856 0.874 0.894 0.884 0.904

α = 0.05 0.916 0.916 0.932 0.942 0.952 0.946

α = 0.025 0.954 0.960 0.958 0.974 0.974 0.974

α = 0.01 0.984 0.984 0.982 0.994 0.984 0.994

Regular 12 polygon

α = 0.10 0.738 0.724 0.720 0.894 0.898 0.884

α = 0.05 0.858 0.846 0.848 0.952 0.956 0.948

α = 0.025 0.926 0.926 0.928 0.976 0.976 0.980

α = 0.01 0.980 0.968 0.968 0.994 0.988 0.994

α = 0.10 0.838 0.842 0.850 0.904 0.900 0.902

Regular 12 polygon α = 0.05 0.928 0.928 0.944 0.95 0.948 0.956

with a square hole α = 0.025 0.972 0.962 0.974 0.976 0.974 0.978

α = 0.01 0.984 0.980 0.984 0.984 0.990 0.992
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Figure 8. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the square
domain with the number of pixels N = 10,000.

aquaculture, and marine operations.

The data sets used in our analysis are from the CMEMS global analysis

and forecast product, available at https://resources.marine.copernicus.eu.

CMEMS collects rough data, such as 3D potential temperature, salinity, and

currents, bottom potential temperature, or mixed layer thickness, and then

transform it using an algorithm. All data are recorded globally on a standard

grid at 1/12 degree (approximately 8 km) and 50 standard levels.
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Table 2. Coverage frequencies from 500 replications based on heteroscedastic errors
σ (s, t) = 0.1 (5− exp (− (s+ t))) / (5 + exp (− (s+ t))) .

Domain Ω
N 10,000 20,000

Distribution of ε normal uniform Laplace normal uniform Laplace

Square

α = 0.10 0.858 0.866 0.878 0.898 0.902 0.904

α = 0.05 0.936 0.932 0.932 0.948 0.952 0.946

α = 0.025 0.970 0.964 0.966 0.976 0.974 0.976

α = 0.01 0.984 0.976 0.988 0.992 0.990 0.992

Regular 12 polygon

α = 0.10 0.736 0.740 0.746 0.880 0.898 0.892

α = 0.05 0.850 0.862 0.870 0.940 0.940 0.944

α = 0.025 0.926 0.944 0.934 0.970 0.970 0.968

α = 0.01 0.962 0.970 0.970 0.992 0.992 0.990

α = 0.10 0.866 0.862 0.870 0.898 0.904 0.896

Regular 12 polygon α = 0.05 0.926 0.934 0.924 0.954 0.954 0.952

with a square hole α = 0.025 0.968 0.976 0.958 0.976 0.976 0.976

α = 0.01 0.988 0.988 0.986 0.992 0.988 0.990
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Figure 9. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the square
domain with the number of pixels N = 20,000.

6.1. Black sea

The Black Sea is a marginal sea of the Atlantic Ocean, lying between Europe

and Asia, covering an area from 26.8◦E to 42.2◦E and 40.5◦N to 47.6◦N; see

the equirectangular projection map in Figure 4. Hourly sea surface (at depth

0.494m) water potential temperature is recorded on standard grids every 1/12

degree, both longitude and latitude, from 00:30 on December 9, 2020, to 00:30

on December 24, 2020. The black dots in Figure 1(a) show the observed data

locations. Each hourly observed temperature data of the Black Sea can naturally

be regraded as an image. This results in longitudinal imaging data with n = 360
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Figure 10. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the square
domain with the number of pixels N = 40,000.
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Figure 11. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the regular 12
polygon domain with the number of pixels N = 10,000.

temporally ordered images, and N = 6,583 pixels in each image.

The mean function reflects the overall trend of the seawater potential

temperature data, and serves as a preliminary step for further data analysis.

We use bivariate splines with the smoothing parameter r = 1 and d = 5 for

the estimation of mean function. Figure 1(b) presents the triangulation of the

Black Sea domain, which contains 39 triangles with 35 vertices. The estimated

mean function and its corresponding 95% SCC computed from (4.5) are displayed

in Figures 17 and 18, respectively. Figure 17 shows that the average sea surface
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Figure 12. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the regular 12
polygon domain with the number of pixels N = 20,000.
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Figure 13. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the regular 12
polygon domain with the number of pixels N = 40,000.

water temperature decreases from a low latitude to a high latitude, corroborating

classic oceanographic theory.

6.2. Madagascar

Madagascar is an island country in the Indian Ocean off the coast of East

Africa. We investigate the potential temperature of the sea around Madagascar,

ranging from 41.0◦E to 55.0◦E and 11.0◦S to 30.0◦S. Similarly to the previous

case, hourly potential temperature is measured on standard grids every 1/12



INFERENCE FOR LONGITUDINAL IMAGING DATA 977

z

x

0 0.2 0.4 0.6 0.8 1
7.5

7

6.5

6

0
0.2

0.4
0.6
0.8

1
5.5

y
z

y

x

0 0.2 0.4 0.6 0.8 1

8

7

6

5

0.2

0.4
0.6

0.8
1

0

Figure 14. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the regular 12
polygon with a square hole domain with the number of pixels N = 10,000.
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Figure 15. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the regular 12
polygon with a square hole domain with the number of pixels N = 20,000.

degree; see Figure 3(a) for the pixel locations. The domain of the see surrounding

Madagascar is more complicated, owing to the existence of a hole (Madagascar

island). We focus on the data from 00:30 on December 9, 2020, to 00:30 on

January 24, 2021. Hence, there are n = 840 time-ordered images, with N = 26151

pixels per image.

We also use bivariate splines with the smoothing parameter r = 1 and

d = 5 to approximate its mean function. The triangulation on the domain of

the sea surrounding Madagascar is shown in Figure 3(b), with 33 triangles and

32 vertices. Figures 19 and 20 present the estimated mean function and its
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Figure 16. Plot of true mean function (yellow surface), bivariate spline estimator (red
surface) and its 95% simultaneous confidence corridors (blue surfaces) on the regular 12
polygon with a square hole domain with the number of pixels N = 40,000.
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Figure 17. (a) Contour map for the bivariate spline estimator for mean function; (b) 3D
plot of the bivariate spline estimator for mean function.

corresponding 95%, respectively, SCC computed from (4.5). Figure 19 shows

that there is always a higher sea surface temperature near land. This strongly

demonstrates that our method is widely applicable and capable of handling a

complex image domain, even with a hole.

7. Conclusion

We have examined longitudinal imaging data over complicated domains,

referring to ordered images with numerous pixels collected at a high frequency
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Figure 18. Plots of the bivariate spline estimator for mean function (middle red surface)
and 95% SCC (upper and lower blue surfaces).
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Figure 19. (a) Contour map for the bivariate spline estimator for mean function; (b) 3D
plot of the bivariate spline estimator for mean function.

over time. We propose an asymptotically correct and computationally efficient

bivariate spline estimator for its mean function. We investigate both the global

and the local asymptotic properties of the bivariate estimator, using SCCs to

make inference on the true mean function. To the best of our knowledge, this is

the first work to focus on large-scale longitudinal imaging data. The proposed

method yields attractive inference results, and is free from an ultrahigh dimension

and model misspecification. Our method can be applied widely to imaging data

in geography, oceanography, and biomedical studies.



980 HU AND LI

degrees_C

Longitude

Latitude

0 0.2 0.4 0.6 0.8

1
15

25

20

0.8
0.6

0.4
0.2

0

35

30

1

Figure 20. Plots of the bivariate spline estimator for mean function (middle red surface)
and 95% SCC (upper and lower blue surfaces).

Several issues warrant further investigation. The data in Section 6 are

considered to come from a horizontal plane, which ignores the curvature of the

earth’s surface. It may be more accurate to assume that the data are collected

on a sphere. Spherical splines, introduced in Lai and Schumaker (2007), may

be better able to approximate the aforementioned 3D imaging data. However,

this is not an easy task, because of the elusive theory and heavy computational

burden of high-resolution 3D images compared with 2D ones. In addition, we

wish to extend the proposed methodology to functional regression models. How

to construct SCCs of the functional coefficients in such models is also challenging,

owing to the deeper asymptotic theory.

Supplementary Material

The online Supplementary Material contains detailed proofs for the main

results and some additional simulation results.

Acknowledgments

This research was supported by the National Natural Science Foundation of

China awarded 11771240, 12301366, 12171269 and 12026242. The authors are

truly grateful to the editor, associate editor, two reviewers for their constructive

comments and suggestions that led to significant improvements in the paper.

References

Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Springer-Verlag,

New York.



INFERENCE FOR LONGITUDINAL IMAGING DATA 981

Cai, T. T. and Yuan, M. (2011). Optimal estimation of the mean function based on discretely

sampled functional data: Phase transition. Ann. Statist. 39, 2330–2355.

Cao, G., Wang, L., Li, Y. and Yang, L. (2016). Oracle-efficient confidence envelopes for

covariance functions in dense functional data. Statist. Sinica 26, 359–383

Cao, G., Yang, L. and Todem, D. (2012). Simultaneous inference for the mean function based

on dense functional data. J. Nonparametr Stat. 24, 359–377.

Choi, H. and Reimherr, M. (2018). A geometric approach to confidence regions and bands for

functional parameters. J. R. Stat. Soc. Ser. B Stat. Methodol. 80, 239–260.

French, J. P. and Kokoszka, P. S. (2020). A sandwich smoother for spatio-temporal functional

data. Spat. Stat. 42, 100413.

Ferraccioli, F., Arnone, E., Finos, L., Ramsay, J. O. and Sangalli, L. M. (2021). Nonparametric

density estimation over complicated domains. J. R. Stat. Soc. Ser. B Stat. Methodol., 83,

346–368.

George, B., Denney, Jr., Thomas, G. H., DelItalia, L. and Aban, I. (2016) Applying a

spatiotemporal model for longitudinal cardiac imaging data. Ann. Appl. Stat. 1, 527–548.

George, B. and Aban, I. (2015). Selecting a separable parametric spatiotemporal covariance

structure for longitudinal imaging data. Stat. Med. 34, 145–161.
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Zheng, S., Yang, L. and Härdle, W. (2014). A smooth simultaneous confidence corridor for the

mean of sparse functional data. J. Amer. Statist. Assoc. 109 661–673.

Zhou, L. and Pan, H. (2014). Principal component analysis of two-dimensional functional data.

J. Comput. Graph. Statist. 23, 779–801.



982 HU AND LI

Qirui Hu

Center for Statistical Science and Department of Industrial Engineering, Tsinghua University,

Beijing 100084, China.

E-mail: hqr20@mails.tsinghua.edu.cn

Jie Li

School of Statistics, Renmin University of China, Beijing 100872, China.

E-mail: lijie stat@ruc.edu.cn

(Received November 2021; accepted September 2022)


