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ABSTRACT

We propose a new non-parametric conditional independence test for a scalar response and a functional covariate over a continuum of quantile
levels. We build a Cramer—von Mises type test statistic based on an empirical process indexed by random projections of the functional covariate,
effectively avoiding the “curse of dimensionality” under the projected hypothesis, which is almost surely equivalent to the null hypothesis. The
asymptotic null distribution of the proposed test statistic is obtained under some mild assumptions. The asymptotic global and local power
properties of our test statistic are then investigated. We specifically demonstrate that the statistic is able to detect a broad class of local alternatives
converging to the null at the parametric rate. Additionally, we recommend a simple multiplier bootstrap approach for estimating the critical
values. The finite-sample performance of our statistic is examined through several Monte Carlo simulation experiments. Finally, an analysis of

an EEG data set is used to show the utility and versatility of our proposed test statistic.
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1 INTRODUCTION

As digital technology develops significantly, there are more and
more instances from the biosciences where the obtained data are
curves. An exciting example is the electroencephalogram (EEG)
data for a person in a resting state with eyes closed. The partici-
pant went through a 5-min test, and EEG signals were recorded
at a sampling rate of 1000 Hz. Since the densely recorded EEG
signals have few measurement errors, they can be naturally re-
garded as functional data. Functional data analysis views data as
realizations of random functions and takes into account the func-
tional nature of the data. Over the past 2 decades, it has become
an important area of statistics, extending the analysis of multi-
variate data to more complicated and informative curve data, see
Silverman and Ramsay (2002), Ramsay and Silverman (2005),
Ferraty and Vieu (2006), and Hsing and Eubank (2015) for ba-
sic theory and applications.

Many studies have suggested that human intelligence or cog-
nitive function may be related to EEG, see Zhang et al. (2020).
A practically important issue lies in investigating the relation-
ship between working memory ability and EEG. Introduced by
Koenker and Bassett (1978), quantile regression models the dis-
tributional relationship between a set of covariates and specific
quantiles of interest of a target response. Due to its robustness
against outliers in response measurements, it finds extensive use
in biosciences and other scientific disciplines. More importantly,
as it enables the description of the influence of covariates on the
complete conditional distribution of the response, quantile re-

gression is particularly helpful when conditional quantile func-
tions are of interest.

Combining quantile regression with functional data leads
to functional quantile regression, in which the most popu-
lar is functional linear quantile regression. It has been exten-
sively investigated; for a comprehensive treatment in estimation
and inference of functional linear quantile regression models
(FLQMs), see Cardot et al. (2005), Chen and Miiller (2012),
and Kato (2012). Additionally, non-parametric quantile regres-
sion has been extended to functional data, as in Chowdhury and
Chaudhuri (2019). The majority of the aforementioned papers
concentrate on utilizing either linear models or non-parametric
models to describe the conditional quantile of the response vari-
able given the functional covariate. Determining whether the
functional covariate X, taking values in a Hilbert space H, ac-
tually contributes to the conditional quantiles of an R-valued
random variable Y for the interested quantile levels, however, is
a more fundamental question and the first step in conditional
quantile modeling. The formal null hypothesis for this problem
is as follows:

Hy:P {Y < Q_Y(r)|X} = 7 almost surely (a.s.)
forallt € A, (1)

where Qy(7) is the unconditional quantile of Y at quantile level
7, which is defined as Qy (t) = inf {y :F(y) > ‘L'} with F(-)
the cumulative distribution function (CDF) of Y, and A is a
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compact subinterval of (0, 1), which collects the quantile lev-
els of interest. If Hy is supported by the data, there is no need
to pursue a quantile regression model for Y given the functional
covariate X at any quantile 7 € .4, which drastically reduces the
statistical modeling of Y.

It is important to note that our test for Equation 1 is quite gen-
eral. When the set A is fairly close to the whole interval (0, 1), say
A = [e, 1 — €] for some arbitrarily small € > 0, it becomes the
conditional distribution independence test of Y given X; namely,
testing the statistical independence of Y and X: Fyx(-) = F(-),
where Fyx(-) denotes the conditional distribution function of
Y given X. Our test also includes testing conditional mean in-
dependence for functional data, that is, E(Y|X) = E(Y), as a
special case. Indeed, although the mean does not depend on X,
other regions of the distribution of Y may be dependent on X.
As a result, our test can detect both mean and distributional re-
lationships between Y and X. In particular, our test may be able
to identify the regions of dependence by varying A properly. On
the other hand, the proposed test reduces to checking the con-
ditional quantile independence at a single quantile when A only
contains a single quantile level in (0, 1).

To our knowledge, there is currently no study investigating
the conditional quantile independence of Y given a functional
covariate X over a continuum of quantile levels, as described
by the null hypothesis in Equation 1. Lee et al. (2020) utilized
functional martingale difference divergence to perform the con-
ditional mean independence test for a response variable and a
predictor variable where either or both can be function-valued.
Their proposed test only focused on the conditional mean inde-
pendence test and omitted the quantile scenario, thus limiting
the scope of their suggested test. Escanciano and Goh (2014)
introduced a non-parametric test for the correct specification
of a linear conditional quantile function over a continuum of
quantiles. However, they did not take functional-valued covari-
ates into account and instead assumed the covariates to be a d-
dimensional random vector. Finally, Shi et al. (2021) proposed
a non-parametric U-process test statistic based on the func-
tional principal component analysis to check the adequacy of the
FLQM. However, their test was constructed at a single specific
quantile rather than employing a continuum of quantile levels.

In our paper, we characterize the null hypothesis 1 via a pro-
jected hypothesis and propose an empirical process indexed by
random projections of the functional covariate, that is, the inner
product of the functional variable X and an appropriate projec-
tion direction h € H. The proposed test statistic is then con-
structed as a Cramer—von Mises norm of the resulting empiri-
cal process, whose limiting null distribution is established under
some mild assumptions. We also investigate its asymptotic be-
havior under the fixed alternative and a certain sequence of local
alternatives approaching the null at the parametric rate.

The main contribution of this work is as follows. First, we em-
ploy random projection of the functional covariate to circum-
vent the curse of dimensionality. Unlike the local smoothing-
based tests, which rely on user-chosen tuning parameters such
as bandwidth and can only detect local alternatives converging
to the null at a slower convergence rate that depends on the tun-
ing parameter, our test is built upon a marked empirical process
indexed by a random projection of the functional covariate as in-

troduced in Cuesta-Albertos et al. (2019) and is able to detect lo-
cal alternatives at the fastest parametric rate. As a result, our test
is robust and powerful in a variety of situations. We select several
different projection directions based on a data-driven approach
to reduce the impact of projection direction h on the testing re-
sults. To achieve higher accuracy in both size and power perfor-
mance, the final P-value of the test is obtained by merging the
series of P-values under different projection directions using the
false discovery rate (FDR) method in Benjamini and Yekutieli
(2001). Second, a multiplier bootstrap is used to compute crit-
ical values of the limiting null distribution. The computational
efficiency is remarkably increased since, unlike the widely used
wild bootstrap method, there is no need to reestimate the param-
eter at each bootstrap replication for the multiplier bootstrap.
It is important to note that the traditional residual-based wild
bootstrap procedure fails to be valid under the framework of a
continuum of quantiles since its resampling procedure can only
be implemented at a single quantile, making it unable to mimic
the original data structure. We demonstrate that the multiplier
bootstrap has good theoretical properties, such as bootstrap con-
sistency under the null hypothesis, in addition to being simple
to apply. Third, the proposed test is flexible enough to measure
the quantile independence at the whole quantile interval, a sin-
gle point, or any interior intervals. It offers a trustworthy infer-
ential tool to comprehensively evaluate the independence with
functional covariates. Monte Carlo simulation findings indicate
that these appealing features translate to tests with excellent fi-
nite sample performance, which also strongly corroborates the
asymptotic theory.

The rest of the paper is organized as follows. In Section 2,
we present the testing framework and introduce our proposed
test statistic based on hypothesis projection. We establish the
asymptotic properties of the proposed test under mild assump-
tions in Section 3. Procedures to implement the proposed test
are reported in Section 4 with details. Then we examine the fi-
nite sample performance of our test via Monte Carlo simulations
in Section S. This is followed by an analysis of the EEG data
set in Section 6. Finally, Section 7 concludes the paper. Addi-
tional simulation results and all technical proofs can be found in
Supplementary Materials.

Throughout this paper, H is a separable Hilbert space en-
dowed with the inner product ( -, -) and associated norm ||-[|4,
and Xis a H-valued rv. defined on (€2, 0, v). Forany X € H, de-
note its norm || X|l% = (X, X)'/2. Given h € H, denote by Xh
= (X, h) the projected X on the direction h. The indicator of
an event A is denoted by I(A), that is, [(A) = 1 if A occurs, and

. . L
zero otherwise. Weak convergence is denoted by ~+ and a, ~ b,
means a,/b, — 1,as n — 0.

2 TESTING PROCEDURE

We now introduce a marked empirical process indexed by
random projections of the functional covariate to construct
the aforementioned test. The null hypothesis 1 can be re-
expressed as Hy : £ [I {Y < Qy(r)} — ‘L'|X] =0 a.s. for all
7 € A, which can also be characterized using the associated pro-
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jected hypothesis on a randomly chosen h € H, defined as
Hop : [E[I {Y < Qy(r)} - ‘E|Xh] =0 as. forallt € A.
(2)

The following lemma specifies formally the necessary and suf-
ficient condition such that [I {Y < Q(z )} -1 |Xh] = 0a.s.
holds based on projections of X.

Lemma 1 (Theorem 2.4, Cuesta-Albertos et al. (2019))
Let 1 be a non-degenerate Gaussian measure on H. Denote
Ho := {h eH: [E[I {Y < Qy(r)} — ‘L'|Xh] = Oa.s.}, under
Assumption (A1) in Section 3, there exists

E[1{Y <@ ()} —tIX] =0 as. <= u(Ho) > O.

The above lemma establishes the (t-a.s. equivalence between
the original null hypothesis Hy and the projected version H,, j,.
Specifically, if Hy holds, then the law of iterated expectation en-
sures Hj 1, holds for every h € H. If Hj fails, Lemma 1 entails
that the set of projections for which Hj is not congruent with
H, 1, has measure zero, that is, 1 (o) = 0, implying that with
probability 1, one can choose a projection h such that H, j, fails.
Thus, to test the null hypothesis Hy, one just first chooses a ran-
dom projected directionh € #, and then tests the projected null
hypothesis Hy j, in Equation 2. However, sometimes the power
of the resulting test may be sensitive to the selected projection.
To lower the influence of the projection direction and improve
power performance, we recommend choosing several different
directions. A detailed selection procedure for the projection di-
rections is discussed in Section 4.

Chosen a random projection h in H, the projected

null hypothesis in Equation 2 can be rewritten as
E [I/Ir {Y, Qy(t)} |Xh] = 0, where
Ve (na)=I{y<q} -7, forgyeR.

To estimate ¥ {Y, Qy(7)}, instead of using the direct plugging-
in estimator, we consider smoothing the indicator function I{Y
< Qy(7)} to simplify the derivation of the theoretical results.
LetK(u) = [*_ k(i1)di, with k(u) = dK(u)/du a user-chosen
univariate non-negative symmetric kernel function that inte-
grates to 1, for example, a standard normal PDF. In addition, let
a = a, € R be a positive sequence of bandwidth parameters
shrinking to zero at a proper rate as n — 00. Given the data set
{ (X;, Y")}?:N we propose the test process as

a0 = - va .G ()T <5), ()
where

Yo (0, q) ZK{?} —1, forq,yeR,

and Qy (1) = argmin ) ., p; (Y; — q), with pr (u) = u{t —

q
I(u < 0)} being the quantile loss function. Note that when a =
0, K{(- —Y)/a} essentially reduces to the indicator function I(Y
< -). It is shown in Web Appendix B of the Supplementary M
aterials that ¥/, , {Y, Qv (x )i facilitates the investigation of the

estimation effect caused by Qy (7).
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The test statistic is proper continuous functionals of T, j,. In
our paper, we focus on the popular Cramer—von Mises (CvM)
norm to measure the distance of T, j, from zero. The CvM norm
is given by

Tl = f T2, (x. 1) dE,p (x)d,
RxA

where F, 5 (x) =n' YL, 1 x# < is the empirical distribution
function based on the randomly projected functional covariate
{th}:’: |- Note that this norm does not admit a closed form; thus,
we use Monte Carlo integration to approximate it, with the cor-
responding test statistic CvM,, defined as

1 m n
CVM,,ZEZZ

j=1 i=1

’ (4)

T.n (X} @)

where {o;}"_ are dense regular grids in A with m — oo asn —
00. The null hypothesis Hy is rejected whenever the test statis-
tic CvM,, exceeds some “large” values, which are consistently es-
timated using a multiplier bootstrap procedure, as described in
Section 3.3.

Remark 1 In this paper, we have focused on the projected hypoth-
esis with 1 random projection. However, it is possible to extend the
test based on multiple random projections. After selecting a set of pro-

jections {h i };_lgo] , we can obtain the corresponding testing processes
{Tn.hi };LPIOI respectively as in Equation 3, and build a vector testing

process (Tn,, - -, Tn,h,,_pm}-)—r- The CvM-type test statistic should
also be modified accordingly. But this is not an easy task, owing to the
elusive theory of the multidimensional projected hypothesis compared
with 1-dimensional ones. Details of this extension are left for future
research.

3 ASYMPTOTIC RESULTS

In this section, we construct the limiting distribution of the em-
pirical process T, j, given in Equation 3 under both the null hy-
pothesis and different types of alternatives. In addition, we also
construct the consistency of a multiplier bootstrap approxima-
tion of the asymptotic null distribution. We first introduce some
technical assumptions.

(A1) {(X,-,Y,-)}:':1 is a sequence of iid. random vari-
ates with £ ||X||%{ < o0 and E |Y|’3 < 00, for some
B > 2. Moreover, Y -, mk_l/k
JIX|5, dv < oo forall k> 1.

(A2) f(-), the Lebesgue density function of F(-), satis-
fies infreq f {Q_y(r)} > 0. Its second-order deriva-
tive f’(-) is uniformly bounded from above on R a.s..

(A3) The conditional CDF of Y given X projected in
any direction h € H, F( - |Xh), has up to gth
order continuous derivatives, which are denoted,
respectively, by F© (~|Xh) ,s=1,2,---,q, for q
> 2, with F@( . |Xh) uniformly bounded from
above and continuous on R a.s.. Its Lebesgue density
function f( - |X?) satisfies inf;cq f {Q_y('[)|Xh} >
I, >0 as. and inffeAf{Qy (t,Xh) |Xh} >5L >0

= 00 with my :=
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a.s. for some constants Ij, I, where Qy (‘E,Xh) =
inf {y : F(y|xh) > 1:}.

(A4) Qy(t)isuniformlybounded and Lipschitz continuous
fort € Aand Qy(t,x) is uniformly bounded and Lip-
schitz continuous for (7, x) € A x R.

(AS) K(-) is first-time differentiable  satisfying
lim, _, _soK(u) = 0, lim, _, oo K(u) = 1. K(-) and
its first-order derivative K'(-) are uniformly bounded
on R as.. K'(+) is symmetric over its support. There
exists P > 2 such that ffooo 'K (u)du = 8y, for s =
0,1,--,p— land ffooo uPK'(u)du < 0o, where 8 is
Kronecker’s delta.

(A6) na*t — 0andna* — 00,as n — 00, a — 0.

Remark 2 The first 2 assumptions are quite common. It is worth
noting that the condition on my in (A1) can be easily satisfied. As
Cuesta-Albertos et al. (2019) pointed out, this condition holds if the
tails of Py, the law of X, are light enough or if X has a finite moment
generating function in a neighborhood of zero, thus the most com-
monly used Gaussian process is included. The moment condition of
Y and the collective boundedness of f(-) and f'(-) are imposed to ap-
ply the uniform Bahadur representation as in Lemma B.3. Assump-
tions (A3) and (A4) assign the smoothness restriction to F( - |X")
and Qy(-) for the application of empirical process theory. Assump-
tions (AS) and (A6) concern about CDF-version kernel K(-) and its
related bandwidth a. If g = 2, the CDF of the standard normal meets
all the conditions on K(-), one can choose a~ n=Y3.If g = 4, one can
use the integral of the fourth-order Gaussian or Epanechnikov kernel
as K(-) witha ~ n 15,

3.1 Asymptotic null distribution

Define an auxiliary process
1 n
Sn yT) = —= Yi7 T
o, 7) ﬁ;wf {¥. (o)}

x {I (X! <x) — R(x)}, ()

where F,(x) = E { I (Xh < x) }, namely the distribution func-
tion of XP. The above process facilitates the construction of a
multiplier bootstrap statistic in Section 3.3.

We show the asymptotic uniform equivalence between T, },
and S, j, in Theorem 1. Then, we study the weak convergence
of S,0,1, and obtain the asymptotic null distribution of T, 1, in
Theorem 2.

Theorem 1 Under Hy, j, and Assumptions (A1)-(A6),

sup |Tn,h(x9 T) - SnO,h(xv T)| = ODD(l)'
(x,7)eRxA

Remark 3 It is worth noting that
1 ¢ ~
T (w0, 7)) = — a1Y, T
n,h( ) \/H ; WT, { QY( )}

x {I(X* <x) —K(x)}, (6)

with By (x) = n™! >l (Xﬁ‘ < x) is also a feasible test process
for Equation 2. It is simply the sample analogue of S, 1, enjoying
the same asymptotic expansion under Hy , as the test process T, j,
given in Equation 3. By applying similar arguments in the proof of
Theorem 1 in Web Appendix B in Supplementary Materials with
I(Xh < x) replaced by 1, we can obtain that the difference between
T, and T, ;, is asymptotically negligible. In our paper, we examine
the finite-sample performance of T,  while omitting its asymptotic
properties to avoid repetition.

Theorem 2 Under H,,, and Assumptions (A1)-(A6),

L
Tn,h ~ g,

where G is a Gaussian process with mean zero and covariance func-
tion K(x1, %2, T1, T2) = (min {T, 1o} — 717,)[Fy(min {x1, x,})

— Fy(x1)F,(x2)].

Continuous mapping theorem and Theorem 2 entail the asymp-
totic null distribution of CvM,, in the following corollary.

Corollary 1 Under H, , and Assumptions (A1)-(A6),

oM, 5 G (x, T)dFy (x)dx.
Rx.A

The null hypothesis is rejected whenever CvM,, exceeds some
overly “large” values. However, the above corollary has shown
that the resulting asymptotic null distribution of CvM,, that
is, f[Rx.A G*(x, 7)dE,(x)dt, depends on the underlying data-
generating process in a complicated manner. Thus, the asymp-
totic critical values for CvM,, cannot be tabulated. To tackle this
issue, we adopt an easy-to-implement multiplier bootstrap pro-
cedure to simulate the critical values of [, , G*(x, 7)dE, (x)dt
as accurately as desired, with details given in Section 3.3.

3.2 Asymptotic power

In what follows, we investigate the asymptotic power properties
of T, 1, under the fixed (ie, global) alternative, as well as a certain
sequence of local alternatives converging to the null at the para-
metric rate. We first consider the fixed alternative hypothesis of

the type

Hy: E{y: {Y, Q(7)} X} #0as., forsomet € A,
(7)

with the corresponding projected version

Hyy: E {Iﬁ, {Y, Qy(‘l,')} |Xh} #0as., forsomet € A.

(8)

Note that H, j, is simply the negation of Hy ;,. The following the-
orem states the asymptotic distribution of T, , under H, j,.

Theorem 3 Under H, , and Assumptions (A1)-(A6),

sup | P Tn(x, T) — Gi(x, T)| = 0p (1),
(x,7)eRxA
where Gi(x,7) =L [f {Qy(fa Xh>|Xh} {QY(I)
—Q (z. XM} 1 (x* < «)].
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It is easy to see from Theorem 3 that under the fixed alterna-
tive H, y,, G (x, T) # O for atleast some 7 and x with a positive
measure. Therefore, T, 1, diverges and the test statistic CvM,, di-
verges to positive infinity at the rate of n, implying that our test
is consistent against the fixed projected alternative H, j, and thus
is consistent against H;.

Next, we study the asymptotic distribution of T, ;, under a se-
quence of local alternative hypotheses converging to the null at
the parametric rate n~'/2 given by

Hy s E[yc Y, Q (D)} 1X] =728 (2. X)
+ 88 (7,X) as., forallt € A, 9)
with the corresponding projected version
Hyn: E[v: Y, Q (1)} X = n2E {8 (7. X) [X"}
+E{88 (r,X) X"} as., forall T € A (10)
We require the functions § (7, X) and 8% (7, X) to satisfy the fol-

lowing assumption:

(A7) 8(-X) is continuous in A as.,
[E{suprEA’S (‘L’,X)|} < o0 and

E {ﬁsupreA SR (r,X)H = o(1).

Note that n~'/2 signifies the rate of H 1, CONverging to Hy j, as
n increases, which is known as the fastest rate possible for spec-
ification tests to be able to non-trivially detect local alternatives.
The following theorem states the asymptotic distribution of T, },
under the sequence of local alternatives H, , .

Theorem 4 Under H,,, ;, and Assumptions (A1)-(A7),

Ton 5 G+ A,

where G is the Gaussian process defined in Theorem 2, and A is a
deterministic shift function given by

Alx,7) = —E[8 (r.X) {I (X" <x) — R(x)}].

Theorem 4 and the continuous mapping theorem lead to that,
under Hy, 1,

CvM, 3 / {Q(x, )+ A (x, ‘L’)}2 dE, (x)dz.
R

Therefore, our test has non-negligible asymptotic powers against
the sequence of local alternatives Hy, 1, since the shift function
A(x, T) # 0 for at least some x and T with a positive measure.

3.3 Multiplier bootstrap approximation
It is shown in Theorem 2 that the limiting null distribution
of T, is non-pivotal, depending on the unknown distribu-
tion function Fy, (-). We suggest an easy-to-implement multiplier
bootstrap method to approximate the limiting null distribution.
Multiplier bootstrap, based on the multiplier central limit theo-
rem in Section 2.9 of Vaart and Wellner (1996), has been widely
applied to approximate Gaussian processes so as to obtain valid
critical values, see Chernozhukov et al. (2013), Biicher and Ko-
jadinovic (2016), Lemyre and Quessy (2017), SantAnna and
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Song (2019), and Chen and Zhou (2020). The key idea of multi-
plier bootstrap is to multiply the asymptotic analytic expression
of the limiting process with mean zero and unit variance pseudo-
random variables that are independent of the sample path, thus
capable of maintaining the first and second moments of the orig-
inal process and achieving a good approximation.

In our paper, the proposed multiplier bootstrap test process is

T (6. 7) = % S Y {1 Qe ()

x {I(X} <») —R@}v, (11
where {V;}!_, is a sequence of iid. multiplier variables with
mean 0 and variance 1 and independent of {(Xi, Yi)}:lzl. A
classical choice of {V}}I_ | is P(V;=1—«k) = K /S, P(V; =
k) =1—k//S, where kK = (ﬁ+ 1) /2, as suggested in

Mammen (1993). Note that the bootstrap test process Equa-
tion 11 depends on the original sample {(X,-, Y,-)}:l:l. Denote

%S in probability” the weak convergence in probability under
the bootstrap law, that is, conditional on the original sample
{(Xl-, Yi)}:l:l . The following theorem guarantees the asymp-
totic validity of the multiplier bootstrap process.

Theorem S Suppose Assumptions (A1)—-(A7) hold. Then under ei-
ther Hy y or Hy,, 1

T £ Gin probability,

where G is the Gaussian process defined in Theorem 2. Moreover, un-
der Hy y, T,', weakly converges to a Gaussian process in probability
with a distribution different from G.

4 IMPLEMENTATION

Construction of the test process Equation 3 involves the kernel
function K(-) and the bandwidth a. To meet Assumptions (AS)
and (A6), we choose K(-) to be the standard normal CDF with
the bandwidth a = cn /3, where cis a tuning constant. We have
found in extensive simulations that ¢ = 1/30 works quite well
and is what we recommend in practice, see Web Appendix C.1
in Supplementary Materials for more details.

The projection direction h is crucial in testing Hy because
it may have a strong impact on the outcome. Although our
testing procedure is theoretically consistent, there exist 2 main
drawbacks pointed out by Cuesta-Albertos and Febrero-Bande
(2010). One is the power loss owing to the projection when
transforming a H-valued rv. into a R-valued rv.. An extreme case
is if one chooses a direction that is orthogonal to the data, that s,
Xh =0, then the P-value of H(l)l is always 1, thus failing to calibrate
the level of the test. Moreover, the instability that one may draw
the opposite inference from 2 different projected hypotheses re-
mains inevitable.

To alleviate the above issues, we propose to randomly choose
n.proj > 1 directions, then test the n.proj projected hypotheses

{Ho.,hj }?fioj simultaneously. We choose to control the FDR in-
stead of employing Bonferroni’s method to achieve better power
performance. And the selection of projections number n.proj is

explored in all sorts of different scenarios in the simulation study.
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Specifically, we generate the projection direction h via a data-
driven approach, which takes into account of the functional prin-
cipal component analysis (FPCA) of X and allows the selection
of several different projection directions. FPCA of the functional
covariate X refers to its well-known Karhunen-Loéve expansion:

o
_z : 1/2
j=1

where elgenvalues {)\] }j:1 1S a decreasmg non—negatlve Series,

{e j }jil is a sequence of orthonormal eigenfunctions of . The

jo=minyk=1,...,n—1:

(iii) Generate the data-driven projection direction h =
j.":l nj’e\j, where n; ~ N(o, s?) with s? the sample
variance of the jth FPC score.

Repeat the above procedure for n.proj times and we get a num-
ber of n.proj projection directions. For each direction h, the P-
value of HP is approximated through the multiplier bootstrap
method. Precisely, generate a number of B multiplier bootstrap

B
samples { T:’]f’ } - in Equation 11, and compute its correspond-

ing testing statistics {CVM*h}le as Equation 4. The P-value of

n
HrisB™1 Y0 I(CuM, < CoM).

After obtaining a number n.proj of different P-values, we use
the FDR method to mix the resulting P-values. The final P-value
is determined as min ;— 1, ..., nprojf1-proj X p(i)/i, where p(y) < -
= P(nproj)- The following proposition guarantees the consistency
of the final P-value for the n.proj projected multiple tests regard-
less of the null hypothesis.

Proposition 4.1 Denote ordered P-values as p(1) < -** < P(uproj)
and let o € (0, 1) be the level of the test, then

n.proj

[P: min P p(,-)SOl} <.

i=1,...,n.proj 1

S NUMERICAL EVIDENCE

In this section, we examine the finite sample performance of
our proposed method. The size and power of the test are exam-
ined through the following 4 cases. Throughout this section, we
let # = £2[0, 1] be the Hilbert space of all square-integrable
functions defined on [0, 1], with the inner product (X;, X,) =
[ X (8)X, (¢ )dt for X,, X, € £2[0, 1].

Case 1: The response variable Y and the functional covariate
X obey the following functional linear model:

Y= (X, B) + €,
100

= Zj_(l'l)/zxijfﬁj(t)’ t €[0,1],

j=1

i=1,m X(t)

rescaled eigenfunctions {¢ j};.'il are called functional principal
components (FPC) of X, ;= A}/Zej, and {Sj}(;il, called FPC
scores, are uncorrelated random variables with mean 0 and vari-
ance 1.

The projection direction h is generated from the following
procedure.

(i) Compute the eigenvalues {/X i}’;‘=1 and eigenfunctions
{Ej}?zl ofXj, ..., X, through FPCA.
(ii) Determine the truncated number j, by

k n—1
SR/ 52 ] <009s
j=1 j=1

where X; and €; are independent standard Gaussian, ¢(t)
=1, ¢;(t) = ﬁcos{(j — 1)7rt} for j > 2. Denote B =
(Br, -+, Pioo) with By = 0.3and f; = 4(—1)1/ 2 forj > 2.
Let B; = rB;/ ||B|| and B(t) = Z}i‘j Bi®;(t). Here, r* corre-
sponds to the strength of the signal and we consider r* =0, 0.1,

0.2,0.5.
Case 2: Y depends on X in a very non-linear fashion. Let

Yi=r||xi||2+€ia i=17"'ana

where X; and €; are defined asin Case 1 andr =0, 1, 2, 4.
Case 3: Y depends on X in another non-linear form. Let

Yi:r<e_xx7xi2>+€i7 i:17"'7n7

where {¢;}!_, is independent standard Gaussian. The covari-
ates {X;}"_,, independent with {€;}"_;, are from the Ornstein—
Uhlenbeck process, which refers to a Gaussian process with
mean function EX; = xpe % + 1 (1 - e_et) and covariance
function Cov{X(s), X(¢)} = (20) o2 (e 01t =l — ¢ 01t+51) In
this case, we set @ = 1/3, 0 = 1, and xy = 0. The coefficient r is
taken to be 0, 1/20, 1/10, and 1/5, respectively.

Case 4: The data are generated from a simple model with het-
eroscedasticity. Let

Yi:(l—i_r”Xi”Z)Ei, i=1,---,n,

where X; and €; are the same as Case 3, while r = 0, 0.5, 1, 2,
respectively. It is worth noting that in this case, the conditional
mean of Y is independent of X, but the conditional variance is
not. Therefore, the classic mean-based tests are unable to detect
such independence, while our test still works.

5.1 Dependence on the number of projections

First, we investigate the adequacy of the tests with respect to the
number of projections n.proj, ranging from 1 to 15. To this end,
empirical sizes and powers of the above 4 cases are examined at
significance level o = 0.05, 0.10. The sample size # is taken to be
50,100, and 200. Throughout this section, the number of Monte
Carlo experiments s set to be M = 500 with B = 2000 multiplier
bootstrap samples in each experiment. We consider a subinter-
val of quantiles given by A = [0.1, 0.9], and compute the test-
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FIGURE 1 Empirical sizes ((A)-(C)) and powers ((D)—(I)) of the test with the number of projections from 1 to 15 in Cases 1-4, based on the

sample size n = 50, 100, 200 and significance levels o = 0.05, 0.10.

ing statistic CvM,, defined in Equation 4 with a grid of m = 17
equally spaced points {a j};.nzl in the interval [0.1, 0.9] and 0.1
= < <o, =009.

Figure 1 (a)-(c) report the empirical sizes of the test under the
null hypothesis. It is shown that the small number of projections
have an obvious over-rejection of the test, such as Case 3 with n
=200 and o = 0.10. As the number of projections increase, the
empirical rejection rates exhibit mild decrements and stabilize
around the nominal level. Figure 1 (d)-(i) display the empirical
powers for each case. We can see that certain bumps always exist
at the small number of projections, such asin Cases 1 and 2. After
that, the power is almost constant for the larger number of pro-
jections. Combining the above facts, we tend to choose a mod-

erate number, such as n.proj = 7, 8, 9, which not only achieves
a perfect balance between the size and power performance but
also avoids the heavy computational burden brought by a large
number of projections.

5.2 Size and power analysis

Table 1 documents the empirical sizes and powers of the test
based on T, 1, in Equation 3 from Cases 1 to 4 with the number of
projections n.proj = 8 and the quantile interval A = [0.1, 0.9]
at significance level @ = 0.0S. It is shown that the proposed test
provides accurate empirical sizes in all cases at both nominal lev-
els, which demonstrates that the multiplier bootstrap works well
in approximating the finite sample distribution of the test statis-
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TABLE 1 Empirical sizes and powers based on T, j, under quantile
interval A = [0.1, 0.9] in Casess 1-4, with & = 0.0S, sample sizes n
=50, 100, 200, and 8 projections.

TABLE 2 Empirical sizes and powers based on T, j, under different
quantile intervals A in Case 1 and Case S, with = 0.0, sample sizes
n =150, 100, 200, and 8 projections.

n=>50 n=100 n=200 A n=50 n=100 n=200
Case 1 ?=0 0.034 0.044 0.048 Case 1 [0.1,0.3] ?=0 0.038 0.062  0.044
?=0.1 0.080 0.178 0.402 ?»=01  0.086 0.132 0.268
=02 0.116 0.316 0.706 ?»=02 0074 0.228 0.480
?=0.5 0.374 0.768 0.980 ?=0.5  0.190 0.504  0.874
Case2 r=0 0.034 0.036 0.046 [0.4,0.6] ?=0 0.042 0.052  0.054
r=1 0.070 0.150 0.584 #»=01  0.100 0.156  0.308
r=2 0.108 0.254 0.878 ?»=02 0136 0294  0.604
r=4 0.096 0.258 0.928 ? =0.5 0.318 0.606 0.922
Case 3 r=0 0.044 0.046 0.038 [0.7,0.9] ?=0 0.034  0.052  0.038
r=1/20 0.322 0.610 0.928 ?=0.1  0.060 0.118  0.250
r=1/10 0.610 0.910 1.000 »=02  0.108 0.244  0.492
r=1/5 0.866 0.992 1.000 ?=05 0206 0.516  0.874
Case 4 r=0 0.038 0.046 0.040 Case S [0.1,0.3] r=0 0.050  0.050  0.042
r=0.5 0.164 0.610 0.972 r=1/40 0.056 0.060 0.074
r=1 0.266 0.798 0.996 r=1/20 0.034  0.062  0.056
r=2 0.352 0.906 1.000 r=1/10 0.042  0.062  0.064

tic under the null. Moreover, the empirical sizes become closer
to the nominal significance level as the sample size n increases,
providing a positive confirmation of Theorem 2 and Corollary
2. In terms of power, as the deviation coeflicient r increases or
the sample size n increases, the empirical power increases in all
cases. The empirical sizes and powers of the tests based on T, },
in Equation 3 and T/, in Equation 6 in Cases 1 to 4 with the
significance level o0 = 0.10, and other numbers of projections,
such as n.proj = 7, 9, are satisfactory across the board, please re-
ter to Table 1 in Supplementary Materials for more details. Per-
formance on power against the local alternatives is displayed in
‘Web Appendix C.4 in Supplementary Materials. Additional sim-
ulation results, including size and power analysis with 1 projec-
tion, can be found in Web Appendix C.5. We also compare our
method with the adjusted Wald test proposed in Li et al. (2022).
Results shown in Web Appendix C.6 demonstrate the satisfac-
tory performance of our method and its superiority over that of
the adjusted Wald test.

One appealing feature of our test is its capability to measure
independence at different quantile levels. Instead of the wide in-
terval [0.1,0.9], we set 3 narrower intervals [0.1,0.3], [0.4,0.6],
and [0.7,0.9], representing the independence over low, moder-
ate, and high quantile levels, respectively. Under the above set-
ting, the testing statistic CvM,, defined in Equation 4 is com-

m
i—1

puted with a grid of m = 11 equally spaced points {0{ j }] in
A. Table 2 shows the empirical sizes and powers of Case 1 un-
der 3 quantile intervals at significance level 0.05. We can see that
empirical sizes are respected under the null hypothesis. But the
empirical powers under all 3 quantile intervals are always lower
than the counterpart under the quantile interval [0.1,0.9], with a
difference 10% — 20%. The reason for power loss is straightfor-
ward, independence under a certain interval is the sufficient but
not necessary condition for independence under its subinterval.
The results of the other 3 cases are quite similar, thus omitted for
saving space.

[04,06] r=0 0060  0.068  0.068
r=1/40 0132 0268 0486
r=1/20 0.144 0276  0.528
r=1/10 0150 0290  0.574

[0.7,09] r=0 0.038 0060  0.052
r=1/40 0370  0.838 0998
r=1/20 0436  0.896 0998
r=1/10 0446 0904  1.000

Following the suggestion of the associate editor, we also con-
sider the case in which Yand X are quantile independent at some
quantile levels.

Case 5: The data are generated from the following model with
heteroscedastic on 7. Let

Y, = U + (T > 0.5)(e ™, X?),

i=1,-,n,

where {U;}!_, are i.i.d. random variables with uniform distribu-
tion on [0,1], and independent with X;. The functional covari-
ate X; is the same as in Case 3. This leads to a quantile regression
model

Qx () =1 +1I(T > 0.5)(e_xf,XiZ),
i=1,---,n 7€ (0,1).

The coeflicient r is taken to be 0, 1/40, 1/20, and 1/10, respec-
tively. It is clear that in this case, for the alternative hypotheses
with r > 0, Yand X are quantile independent at quantile levels T
€ (0,0.5), while quantile dependent at T € (0.5, 1).

We check the empirical sizes and powers of Case S under 3
quantile intervals at significance level 0.05, with results shown in
Table 2. It is found that empirical rejection rates of the tests un-
der the quantile interval [0.1,0.3] are always close to the signifi-
cance level regardless of the coeflicient r, since Yand X; are quan-
tile independent at quantile interval [0.1,0.3]. Both the tests un-
der the quantile interval [0.4,0.6] and [0.7,0.9] exhibit accurate
empirical sizes under the null hypothesis. The empirical pow-
ers under the quantile interval [0.7,0.9] are always higher than
the counterpart under the quantile interval [0.4,0.6], which is
not surprising, as Y and X; are dependent at the whole quan-
tile interval [0.7,0.9] while partially dependent at the quantile
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TABLE 3 The P-value of test statistic under the EEG data set based
on T,, ;(the first row) and Ti 4 (the second row) at different quantile
levels with number of projections n.proj = 7, 8, 9, respectively.

A [0.1,0.9] [0.1,0.3] [0.4,0.6] [0.7,0.9]
n.proj =7 0.046 0.252 0.040 0.224
0.038 0.238 0.024 0.211
n.proj =8 0.048 0.288 0.038 0210
0.035 0.272 0.022 0.211
n.proj =9 0.049 0.324 0.038 0.236
0.038 0.306 0.027 0.218

interval [0.4,0.6]. These findings further confirm that our test
provides a comprehensive and powerful tool to check the condi-
tional quantile independence with functional covariate. Full re-
sults of the empirical sizes and powers based on T, , under dif-
ferent quantile intervals A in Cases 1 and 5 with the number of
projections n.proj = 7, 8,9 and significance levels o = 0.05, 0.10
can be found in Table 2 in Supplementary Materials.

6 DATA ILLUSTRATION

The proposed test is further illustrated using EEG data collected
by the research group of Prof. Ji Linhong at the Tsinghua Uni-
versity Department of Mechanical Engineering. EEG is known
to provide rich information about brain function. In the experi-
ment, 142 university students went through a 5-min closed-eye
resting state, and EEG signals were recorded from the scalp loca-
tion based on the international 10/20 system of electrode place-
ment at a sample rate of 1000 Hz. We truncate EEG signals from
S min to the first 0.3 s due to the signal periodicity, leading to
300 recorded signal values for each individual. Figure 3(a) in
Supplementary Materials displays S randomly chosen functional
observations of the EEG data.

The working memory ability score is measured by the popu-
lar N-back test, in which participants were successively shown
a stream of English letters (randomly chosen from A to Z) on
a screen and then asked to decide whether each letter matched
the one appearing N times before. The score is given in terms of
accuracy and reaction time, representing the working memory
ability well. It is a continuous variable ranging from —45.092 to
16.414. It is worth noting that the N-back task test does not in-
volve EEG and its score is often used as the variable to be pre-
dicted with eyes-closed resting-state EEG signals as input vari-
ables.

In our paper, we aim to investigate the conditional quantile in-
dependence of the working memory ability score Y on EEG sig-
nals (functional covariate X). Hence, the null hypothesis is

Hy : [P{Y < Qy(r)|X} =7 as., forallt € A

We compute the testing statistics with n.proj = 7, 8, 9 projec-
tions, and B = 2000 bootstrap replications. Table 3 presents the
P-values at different quantile levels. We conclude from the ta-
ble that for the whole quantile interval and the moderate quan-
tile intervals, the null hypothesis should be rejected at level
a = 0.05, indicating that the EEG contributes significantly to
the quantile of the working memory ability. However, for the
higher and lower quantile intervals, we retain the null hypothe-
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sis, and there is no sufficient evidence that the conditional quan-
tile of the working memory ability is correlated with EEG signals.
The above findings corroborate the classic neuroscience theory,
demonstrating the versatility of our method.

To further verify the result of the test, we fit the following
FLQM for the working memory ability score Y and EEG curve
X:

@ﬁj:ﬁx@ﬂnﬂ&+a (12)

where T is a pre-determined quantile level, 8( -, T) is a slope
function and € is the error.

We estimate B( -, 7) as described by Ramsay and Silver-
man (2005) using FPCA of X. A total of 19 FPC scores are
chosen to capture 99% variance explained by the components
used to construct the covariance function of X. We set the
fixed quantile level from 0.1 to 0.9. The estimates of B( -, T)
at different quantile levels are displayed in Figure 3(b)-(d) in
Supplementary Materials. We adopt the measure R proposed in
Koenker and Machado (1999) to evaluate the goodness-of-fit of
each quantile regression model, which is calculated by 1 minus
the ratio between the sum of absolute deviations in the fully pa-
rameterized models and the sum of absolute deviations in the
null (non-conditional) quantile model. The higher value repre-
sents the better fitting. Specifically,

R=1-V(1)/V (1), (13)

where V (1) = ming(. ;) Y Pr {Yi — fTX,-(t),B(t, ‘L’)dt}
and V () = minyer > pr (Y;—b). To generalize the
goodness-of-fit measure into the continuous quantile case, we
denote the measure R’ as

R’:l—/Af/\(r)dr//AV(t)dt. (14)

The results of goodness-of-fit evaluating at single quantile are
summarized in Table 4. While for continuous quantile intervals
[0.1,0.3], [0.4,0.6], and [0.7,0.9], the corresponding goodness-
of-fit measure R’ values are 0.086, 0.259, and 0.091, respectively.
It is easy to find that among all quantile levels, the significant
R values correspond to the moderate levels, such as fixed level
0.4, 0.5, and 0.6; or continuous interval [0.4,0.6], implying that
FLQM can explain the relationship between the conditional
quantile of the working memory ability score with EEG curves
to some extent. However, for low and high quantile levels, both
goodness-of-fit measures R and R’ are rather small, thus FLQM
fails to model the data sufficiently. These findings are consistent
with the results of the proposed conditional quantile indepen-
dence test, further confirming our test’s high accuracy and broad

applicability.

7 CONCLUDING REMARKS

In our paper, we consider testing conditional quantile indepen-
dence with functional covariate. The testing statistic from the
projected residual marked empirical process weakly converges to
a Gaussian process at the root-n rate under the null. We also study
its asymptotic behavior under the fixed alternative and a series
of local alternatives. The calibration for the critical values of the
limiting null distribution is implemented by a straightforward
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TABLE 4 The goodness-of-fit measure R in Equation 13 under the EEG data set for the functional linear quantile regression model Equation 12

with different quantile levels.

T 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9

R 0.077 0.070 0.093 0.221

0.287 0.234 0.105 0.072 0.093

multiplier bootstrap procedure. To our best knowledge, this is
the first piece of work in the conditional independence test with
functional covariate over a continuum of quantiles, which yields
an attractive testing statistic, and at meanwhile is free from the
ultra-high dimension as well as user-chosen tuning parameters
such as bandwidths. Some promising extensions warrant further
investigation. One possible direction is to apply our method to
the goodness-of-fit test for the FLQM with a continuum of quan-
tiles. It is not trivial due to the gap in handling the parameter es-
timation effect.
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