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We give a survey on the field of telematics car driving data research in actuarial science. We describe 
and discuss telematics car driving data, we illustrate the difficulties of telematics data cleaning, and we 
highlight the transparency issue of telematics car driving data resulting in associated privacy concerns. 
Transparency of telematics data is demonstrated by aiming at correctly allocating different car driving 
trips to the right drivers. This is achieved rather successfully by a convolutional neural network that 
manages to discriminate different car drivers by their driving styles. In a last step, we describe two 
approaches of using telematics data for improving claims frequency prediction, one is based on telematics 
heatmaps and the other one on time series of individual trips, respectively.
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1. Introduction and literature overview

Statistical analysis of telematics car driving data is a vastly 
growing and exciting field of actuarial science. The purpose of this 
survey is to give a summary of the current state-of-the-art of this 
field, and to point out potential research directions. The best way 
to give an overview of the field is to provide a literature review 
where we try to identify important contributions to this field of 
statistical modeling; this will be done in this section. In subse-
quent sections we will describe the nature of telematics car driving 
data, the difficulties one faces dealing with telematics data, and we 
illustrate ways of making telematics data useful for inference and 
predictive modeling of insurance claims.

Early work on telematics car driving data is not directly related 
to actuarial problems. The papers of Esteves-Booth et al. (2001), 
Hung et al. (2007), Wang et al. (2008), Kamble et al. (2009) and 
Ho et al. (2014) have appeared in the transportation literature af-
ter the turn of the millennium. These papers use telematics data to 
understand vehicular emission, energy consumption and impacts 
on traffic in different cities of the world. In the transportation liter-
ature the corresponding field also goes under the name of driving 
cycles, and these authors study the cities of Edinburgh, Hongkong, 
Pune, Singapore and various Chinese cities. Analyzing driving cy-
cles, Hung et al. (2007) use speed-acceleration probability distri-
butions as a selection criterion of the most representative driving 
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cycles. Their analysis shows that driving cycles on different routes 
(e.g., urban, sub-urban, highway) result in quite different speed-
acceleration patterns. Similar to speed-acceleration probability dis-
tributions, the speed-acceleration (v-a) heatmap was introduced to 
the actuarial literature in Wüthrich (2017). It has been successfully 
used for classifying different driving styles, see Gao and Wüthrich 
(2018) and Zhu and Wüthrich (2021), and for improving claims 
frequency prediction, we refer to Gao et al. (2019a,b, 2022).

There is a stream in the transportation literature on driving be-
havior associated with accidents. Joubert et al. (2016) discretize 
acceleration into a finite risk space and complement it with speed 
data to analyze accidents; this approach is similar to v-a heatmaps. 
Ma et al. (2018) and Hu et al. (2019) consider contextual driv-
ing performance measurements such as relative speed to real-time 
traffic speed on the same road, contextual speeding under vari-
ous traffic conditions, congestion level, duration on different road 
types or at different daytimes, etc. They examine the relationship 
between driving performance and accidents in a generalized linear 
model. They conclude that peak time driving, hard braking and ac-
celeration relative to speed are important risk factors. A limitation 
in their study is that the accident history does not match with 
telematics data observation period. Wahlström et al. (2015) pro-
pose a framework for the detection of dangerous vehicle cornering 
events. They apply an unscented Kalman filter to raw GPS time se-
ries data to obtain their driving statistics. This framework is tested 
in a field study.

Early developments on telematics data that are more closely re-
lated to insurance problems are the work of Boucher et al. (2013)
le under the CC BY-NC-ND license 
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and Paefgen et al. (2014) who study risk modeling based on so-
called pay-as-you-drive (PAYD) insurance data. PAYD insurance is 
also called usage-based insurance (UBI). These first papers try to 
understand the impact of mileage on the risk of accidents. Boucher 
et al. (2013) show that the effect of mileage on the risk of an 
accident is far different from being linear. This may be because 
drivers with higher mileage are more experienced drivers, driv-
ing newer automobiles and driving more often on (safer) high-
ways. Paefgen et al. (2014) consider multivariate exposures by 
aggregating mileage w.r.t. the daytime, weekday, road type and 
speed intervals. In a similar spirit, Verbelen et al. (2018) treat 
such multivariate exposures as compositional variables. Ayuso et 
al. (2016b) establish a survival model using a Weibull regression 
for the distance traveled to the first accident at fault. They find 
that speeding and nighttime driving reduce the distance traveled 
to the first accident. With the same survival model, Ayuso et al. 
(2016a) find that gender differences in the risk of accidents are 
mainly attributable to the intensity of vehicle use, i.e., men drive 
more frequently than women. Ayuso et al. (2019) further incor-
porate driving habit data such as percentage of distance traveled 
at night, above the limit, or in urban areas. Based on a dataset 
of a Taiwan insurer, Lemaire et al. (2016) find that mileage is the 
most powerful predictor of the number of claims at fault (using a 
Wald test), and the information contained in the bonus-malus pre-
mium level complements the importance of the mileage variable. 
Boucher et al. (2017) study the non-linear effects of duration and 
distance exposure on the risk of an accident in a generalized addi-
tive model.

The previous literature mainly considers PAYD features, but, of 
course, besides driving habits we should also explore driving skills 
and driving behavior. In insurance, this has motivated to contrast 
PAYD products to pay-how-you-drive (PHYD) products. Such PHYD 
products can be designed based on dangerous driving maneu-
vers, disregarding traffic rules like speeding, smart phone use, etc. 
There is vastly growing literature in this area of research, and we 
only mention a small selection of the available literature. Huang 
and Meng (2019) incorporate travel habits, driving performance 
and critical incidents into their claims frequency predictive model. 
Based on thorough feature engineering, they extract 30 telemat-
ics variables for each driver. Sun et al. (2020) use brake count 
and average position of the accelerator pedal as dependent variable 
measuring driving risk due to lack of accident or claims data. They 
use driving distance, speed, and revolutions per minute (RPM) as 
independent variables. So et al. (2021b) use intensity of sudden 
braking/acceleration/turns and proportions of durations on differ-
ent road types and daytimes to predict the number of accidents in 
a cost-sensitive multi-class AdaBoost algorithm. This proposed al-
gorithm can deal with the class imbalance problem of accidents. 
Denuit et al. (2019) propose a credibility approach to incorporate 
posterior information of driving experience into insurance pricing. 
Since public telematics data is not available, So et al. (2021a) gen-
erate synthetic data that shares similar features as real telematics 
data maneuvers, so that our community can at least explore such 
synthetic data. More on the economic and legal side Geyer et al. 
(2020) explore the effect of driving behavior on insurance contract 
design, risk and insurance selection. Eling and Kraft (2020) provide 
an overview of the usefulness of telematics in automobile insur-
ance, health insurance and household insurance.

Another interesting stream of literature is Guillén et al. (2020, 
2021) who study near-misses. Since car insurance claims are rare 
events (low frequency events), car insurance data suffers from the 
so-called class imbalance problem which means that the class of 
accident-free drivers is by far bigger than the class of drivers that 
suffer accidents. This may pose some challenges in determining 
important explanatory features for claims prediction. Guillén et 
al. (2020, 2021) enlarge the class of drivers with accidents by 
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so-called near-misses incidents. A main difficulty is that a good 
definition of a near-miss event needs to be found, e.g., extreme 
acceleration and deceleration or excessive use of smart phones 
during driving may be a suitable definition.

Most of the previous work is based on extracting scores from 
telematics data, e.g., distances driven at nighttimes, numbers of 
excessive acceleration, relative amount of speeding, etc. Early 
work on directly using raw telematics data in the sense of high-
frequency data (recording speed, acceleration and change of direc-
tion) has been done by Weidner et al. (2016, 2017) who extract 
covariates directly from time series of telematics location data us-
ing discrete Fourier transforms. In a similar vein Gao and Wüthrich 
(2019) use such time series data to allocate individual car driving 
trips to the right drivers. The paper of Meng et al. (2022) studies 
time series of individual trips for claims prediction by identifying 
more and less safe trips. Interestingly, in a similar spirit, Bayat et 
al. (2021) use telematics data as a biomarker for preclinical diag-
nosing of an Alzheimer disease, as driving styles seem to change 
under this disease. In general, new statistical and machine learn-
ing approaches should be able to directly act on raw time series 
of telematics data through the capability of representation learn-
ing, that is, machine learning methods are capable to engineer raw 
features into a new representation so that they are suitable for 
predictive modeling, we also refer to Section 7.1 in Wüthrich and 
Merz (2021) for representation learning.

Finally, we highlight Appendix A of Gao et al. (2019a) and the 
paper of Duval et al. (2021) which study how much telematics in-
formation is needed. Both papers conclude that roughly 3 months 
of telematics car driving data are sufficient to receive stable telem-
atics information, of course, the caveat being that the car driving 
behavior is stationary over at least this time period. Thus, for those 
insurance companies that have not been collecting telematics data, 
yet, it will not take too much time to catch up on the data side 
(supposed that the underlying insurance portfolio is sufficiently 
large and that the right technology is in place).

Organization. In the next section we discuss available explana-
tory variables for insurance pricing. This includes classical actuarial 
covariates as well as telematics car driving data. Moreover, we 
identify the typical size of telematics data, and we conclude that 
maintaining and using this data can be a challenge because of its 
big size. In Section 3 we illustrate telematics data and we discuss 
the issue of data quality. In Section 4 we allocate telematics car 
driving observations to individual car drivers, which allows us to 
classify car drivers and it also raises the critical issues of trans-
parency and privacy concern. In Section 5 we indicate two different 
approaches of making telematics data useful for claims prediction 
and car insurance pricing. The first approach is based on aggre-
gated telematics data (to reduce the size of telematics data), and 
the second approach scores individual car driving trips before en-
tering a regression model. Finally, in Section 6 we conclude and 
give an outlook.

2. What is telematics car driving data?

We discuss the nature of telematics car driving data in this 
section. We start by describing the classical covariate information 
that is usually available for car insurance pricing before explaining 
telematics car driving data.

2.1. Classical covariates for car insurance pricing

Classical car insurance pricing uses roughly 50 potential covari-
ates in its statistical modeling procedure. This information is either 
received at inception of the insurance contract (i.e., it is available 
for initial insurance pricing), or, subsequently, complemented by 
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claims experience at contract renewals. Therefore, one typically 
distinguishes between prior information and posterior information 
for insurance pricing, see Denuit et al. (2019).

Available feature information at inception of the contract in-
cludes:

• Car related features: type of car, car brand, vehicle model, size 
of car, age of car, weight of car, horse power, type of engine, 
fuel type, cubic capacity, price of car, additional equipment, 
driving assistance tools, number of seats, etc.

• Driver related features: driver’s age, gender, nationality, size 
of household, marital status, dependent children, occupation, 
medical conditions, credit record, leasing, type of flat, garage, 
etc.

• Insurance contract related features: type of contract, date of 
contract, duration of contract, sales channel, deductible, bonus 
protection, other insurance products, etc.

• Location related features: province of living, city of living, zip 
code, city-rural area, etc.

All this feature information is not directly driving style related. 
The difficulty is that we would like to know whether we have a 
good or bad driver, safe or incautious driver, calm or aggressive 
driver, but since this information is not available (it is latent) we 
use proxy variables that may characterize driving styles of drivers. 
For instance, the type of car or the type of insurance product 
may reveal driving style information, or better, may correlate with 
driving styles. Therefore, regression models aim at finding system-
atic effects in this feature information for explaining propensity to 
claims.

Apart from the above information, there is also driving related 
information available in classical insurance pricing:

• Driving related features: date of driving test, annual mileage, 
vehicle use, bonus-malus level, claims experience, time since 
last claim, etc.

Remark that this driving related information is by far smaller 
than the previously mentioned features. The date of the driv-
ing test tells us something about driving experience. The annual 
mileage is a quantity that is estimated by the policyholder, thus, it 
is not precise and it can be corrupted to save premium. Also the 
bonus-malus level can be problematic, in theory, the bonus-malus 
level directly encodes past claims experience, and, thus, should be 
very predictive. However, there are several ways to circumvent an 
unfavorable bonus-malus level, e.g., the initial assessment is not 
correctly stated, small claims are not reported but covered by the 
policyholder, or there is bonus protection insurance in place which 
ensures that the bonus-malus level is not changed in case of an 
accident.

Summarizing, these covariates serve as proxies for driving 
habits and driving styles, but most of them are not directly re-
lated to driving skills. In general, we avoid talking about causality, 
here, as mostly we only explore correlations through these proxy 
variables.

2.2. Telematics car driving data

In contrast to the classical covariate information above, telem-
atics car driving data directly records driving habits and driving 
styles. Telematics car driving data may have many different for-
mats. In the introduction we have been mentioning the number of 
dangerous maneuvers, the amount of speeding or mobile use, see 
also Guillén et al. (2020, 2021) and So et al. (2021a,b). Here, we are 
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mainly going to focus on high-frequency time series of telematics 
data, sometimes also called raw telematics data. This time series 
data records a set of variables every second during driving. Conse-
quently, we see telematics data in the field of the so-called internet 
of things (IoT) where sensors continuously control and record the 
environment, and the resulting measurements are exchanged and 
stored, e.g., in a data cloud. Typically, we think of the following 
information received second by second:

• global positioning signal (GPS) location data, speed, accelera-
tion, braking, intensity of left and right turns,

• engine information like engine revolutions, engine tempera-
ture, etc.,

• vehicle sensors and cameras, information of driving assistance 
tools,

• time stamp (daytime, rush hour, night, etc.), total mileage at 
different daytimes,

• road type, traffic conditions, weather conditions, etc.
• traffic rules (e.g. speeding), driving and health conditions, etc.
• number of passengers, distraction, smart phone use, etc.

In Table 5 in the appendix we provide a short example of a 
telematics car driving data time series. This example includes time 
stamp, GPS location, speed, acceleration, engine revolution and the 
quality of the GPS signal being in {0, 1}. We observe that the GPS 
signal is sometimes missing (empty entries in Table 5) due to sig-
nal failure. This difficulty is going to be discussed further in the 
next section.

We do a small back-of-the-envelop calculation to understand 
the size of telematics data. If we assume that we collect 100 KB
telematics data per driver and per day, this amounts to roughly 
40 MB of data per driver every year. Having a comparably small 
insurance portfolio of 100,000 drivers, results in 4 TB of data every 
year. Thus, we easily get data volumes that can neither be stored 
nor be handled on conventional personal computers. This high-
lights that the volume of telematics data can easily be a challenge. 
Such data is likely to be stored in a data cloud, and it requires 
cloud computing to evaluate a whole insurance portfolio of telem-
atics high-frequency time series data. We mention this because it 
imposes quite some challenges to academics as maintaining such 
an environment is both costly and time consuming, and we prob-
ably need to find ways to collaborate with industry to do research 
on telematics data.

At this stage, also good data warehousing becomes important as 
it may not be easy to identify all trips of a given driver in big data 
where new data is added for multiple drivers every day. For this 
reason, most of the present research in the literature does not di-
rectly explore time series telematics data, but extracts scores that 
are further processed by statistical models. In our research, see 
e.g. Gao et al. (2019a), we work with exposures and claims data of 
roughly 2 to 3 years, i.e., we can follow individual drivers and their 
claims experience for almost 3 years, however, the telematics in-
formation that we use is compiled from a shorter time period. Typ-
ically, we extract driving styles from 3 months of telematics data, 
and we have proved that this volume is sufficient to receive sta-
ble and reliable telematics information. Of course, the disadvantage 
of this shortcut is that the claims experience and the telematics 
data do not span exactly the same time interval, and claims can-
not be allocated to individual trips, but only to the driving styles 
that have been extracted from the 3 months of telematics data. 
Moreover, such an approach assumes stationarity over the whole 
time interval considered, so that the extracted telematics features 
are relevant for the observed claims history.
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Fig. 1. (lhs) 200 individual trips of a given driver, and (rhs) simple speed statistics. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)
Fig. 2. Speed vt (blue), acceleration/deceleration at (red) and change in direction �t

(black) for 180 seconds of driving 1 ≤ t ≤ 180.

3. Illustration of telematics data

In this section we illustrate telematics time series data and we 
highlight the challenges in data collection and data cleaning.

3.1. Speed, acceleration and change of direction

We start by compiling information similar to Table 5 in the 
appendix to simple statistics. The left-hand side of Fig. 1 shows 
the GPS coordinates second by second of 200 individual trips of a 
given car driver. For illustrative purposes all trips start in coordi-
nate (0, 0), and each trip is rotated by a random angle. The 100 
shorter trips are colored yellow, and the 100 longer trips are in 
gray. Having these GPS coordinates (xt , yt) every second t ≥ 0 we 
can calculate average speeds vt , acceleration/deceleration at and 
change in direction �t every second t ≥ 1. The right-hand side of 
Fig. 1 shows the relative time spent (over all trips) in the different 
speed buckets [0], (0, 5], (5, 20], (20, 50], (50, 80], (80, 130]; units 
are km/h. Noticeable is that the idling phase amounts to roughly 
35% of the total time spent while running the vehicle engine.

Fig. 2 shows speed vt , acceleration at and change of angle �t of 
180 seconds of driving 1 ≤ t ≤ 180. From this graph it is apparent 
that braking (in red) lowers the speed (in blue), and in many cases 
this goes along with a change of direction (in black). All this seems 
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rather obvious, and the use of this data seems straightforward, but 
to get to this point we first need to discuss data quality.

3.2. Difficulties about telematics data

Often data quality is a serious issue in telematics car driving 
data, and having big data makes data cleaning an even bigger 
challenge. Data quality can be most easily understood by having 
different devices measuring the same quantity, but giving different 
results. In our case, we have different sources of speed and accel-
eration information; we also refer to Table 5 in the appendix:

• GPS location data gives the position (xt , yt) every second t
from which speed v(xy)

t , acceleration a(xy)
t and change in di-

rection �(xy)
t can be calculated.

• Moreover, the GPS device directly provides speed v(gps)
t and 

heading of the car. This information is supported by the infor-
mation of the quality of the signal being in {0, 1}.

• There is the vehicle instrumental panel that provides speed 
v(vss)

t from the vehicle speed sensor (VSS).
• There is an accelerometer installed (black box) that measures 

longitudinal a(acc), lateral and vertical acceleration w.r.t. the 
car’s direction.

The difficulty in practice is that this information is often not in 
line, information is incomplete, jumps in direction may happen, 
e.g., between 0◦ and 360◦ , and (regular) calibration of the ac-
celerometer seems a general issue.

Fig. 3 shows one single trip of 120 seconds. It illustrates dif-
ferences between GPS speed v(gps)

t in blue and the vehicle sensor 
speed v(vss)

t in green on the left-hand side. The right-hand side 
shows the acceleration a(acc)

t from the accelerometer in red, which 
after second 80 is a positive constant, though the speed pattern on 
the left shows that this car is standing still. Thus, the calibration of 
the accelerometer is not correct, here, and the different speed pat-
terns between v(gps)

t and v(vss)
t may be essential in understanding 

whether we have a calm or an aggressive driver.
Fig. 4 gives an example of missing signals. The left-hand side of 

this figure shows the GPS and the vehicle sensor speeds, and the 
right-hand side shows the quality of these signals. The GPS sig-
nal has quality issues around seconds 30 and 200, and the vehicle 
sensor signal completely fails after 400 seconds. Of course, such a 
situation will not allow us to successfully calculate the entire ac-
celeration pattern, if the speed entry is missing for part of the trip.
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Fig. 3. 120 seconds of driving: both plots show the same trip with GPS speed v(gps)
t in blue, the vehicle sensor speed v(vss)

t in green and the accelerometer acceleration a(acc)
t

in red.

Fig. 4. Missing GPS signals and missing vehicle sensor signals: (lhs) gives the GPS and the vehicle sensor speeds, and (rhs) shows the quality of these signals.
We conclude that we have experienced substantial difficulties 
with the signal quality of the accelerometer, and also with GPS 
locations (xt , yt) we have experienced issues like position shifts. 
GPS speeds v(gps)

t , GPS direction and vehicle sensor speeds v(vss)
t

seem more reliable. Having the quality of these two signals, we 
can also determine missing data, and in case of missing data we 
can either disregard the whole trip or impute suitable values. We 
remark that this data cleaning process takes by far the most time 
in the whole data modeling process. This can easily add up to more 
than 90% of the total time of modeling, and the statistical part 
seems time-wise almost negligible.

4. Transparency of telematics car driving data

We now assume to have successfully cleaned our data and we 
would like to present a first analysis on this data. This first anal-
ysis will indicate how much insight we can gain about individual 
drivers from telematics trip data second by second.

We select 3 different drivers, we call them A, B and C, and 
we analyze the speed vt , acceleration/deceleration at and change 
in direction �t patterns of their individual trips of 180 seconds, 
1 ≤ t ≤ T = 180. The question that we try to answer is whether 
this time series data is sufficient to correctly allocate the individ-
ual trips to the right driver. Fig. 5 shows 3 trips of each of these 
3 drivers A, B and C, and we explore whether these plots discrim-
inate different drivers. We emphasize that the 180 seconds have 
been selected at random from the entire (bigger) trips to limit
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the influence of frequently traveled routes, e.g., the beginning of 
the trip will likely explore the neighborhood of the living place of 
the driver. There is also nothing particular in choosing exactly 180 
seconds, it has just turned out in our analysis that this amount 
of data provides reliable classification results. In order to solve 
this classification question we use the set-up of Gao and Wüthrich 
(2019).

4.1. Problem setting and data pre-processing

Our goal is to correctly allocate T = 180 seconds of telematics 
car driving experience to the right driver, see Fig. 5. Dealing with 
time series data, there are different machine learning tools that 
allow one to discriminate these trips. These are recurrent neural 
networks (RNNs), convolutional neural networks (CNNs) or atten-
tion layers. For our purpose CNNs are the most appropriate tool, as 
CNNs have certain translation invariance properties, see Wiatowski 
and Bölcskei (2018). These translation invariance properties allow 
CNNs to find similar structure in different parts of the time series. 
This is exactly a necessary property that we would like to have in 
our analysis: hard braking and fast acceleration can occur at any 
time during these 180 seconds, but this describes the same driv-
ing style. In a nutshell, CNNs have different filters that allow the 
network to find similar structure in different parts of the time se-
ries. These filters act like rolling windows, sliding across the whole 
time series trying to spot a particular structure in this (rolling) 
window.

Before formally introducing CNNs, we describe and pre-process 
our telematics data. We denote the triple speed, acceleration and



G. Gao, S. Meng and M.V. Wüthrich Insurance: Mathematics and Economics 104 (2022) 185–199

Fig. 5. First 3 trips of 3 selected drivers A, B and C: each trip is T = 180 seconds.
change in direction at seconds 1 ≤ t ≤ T by

(v j,t,a j,t,� j,t)
� ∈ [2,50]km/h × [−3,3] m/s2 × [0,1/2], (4.1)

where 1 ≤ j ≤ J labels the individual trips. Speed satisfies v j,t ∈
[2, 50]km/h, we make this choice because we do not want to clas-
sify drivers by having a different idling or high speeding behavior. 
To remain in this speed interval we censor speed, and we concate-
nate the trips by cutting off the censored part up to 2 seconds, so 
that the resulting speed pattern is still smooth. Acceleration and 
deceleration is censored at ±3 m/s2 because of scarcity of data 
outside of this interval, and we take the absolute value of the sine 
of the change in angle censored at 1/2. Weidner et al. (2017) state 
that strong acceleration can go up to +6 m/s2 and a maximal de-
celeration can go down to −8 m/s2 under good conditions, a wet 
surface typically changes this value to −7 m/s2. Remark that strong 
acceleration and hard deceleration also serve at defining the near-
missing events in Guillén et al. (2020).
190
The triple (4.1) allows us to define the 3-dimensional time se-
ries

z j =
(
(v j,1,a j,1,� j,1)

�, . . . , (v j,T ,a j,T ,� j,T )�
)� ∈ RT ×3.

(4.2)

The covariate z j describes 180 seconds of telematics driving ex-
perience and we allocate the response Y j ∈ {A, B, C} to each time 
series z j to indicate which of the 3 drivers has been driving the se-
lected trip. Thus, we have observations (Y j, z j) j with a categorical 
response taking the three values A, B or C.

4.2. Classification with convolutional neural networks

In this section we describe the CNN architecture that we use 
for our classification problem, this architecture is taken from Gao 
and Wüthrich (2019). A CNN can be seen as an extension of a 
multinomial logistic regression model. Our time series feature z ∈
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Listing 1: CNN architecture for individual trip allocation taken from Gao and Wüthrich (2019).

model <- keras_model_sequential()
#
model %>%
layer_conv_1d(filters = 12, kernel_size = 5, activation=’tanh’, input_shape = c(180,3)) %>%

layer_max_pooling_1d(pool_size = 3) %>%
layer_conv_1d(filters = 10, kernel_size = 5, activation=’tanh’) %>%

layer_max_pooling_1d(pool_size = 3) %>%
layer_conv_1d(filters = 8, kernel_size = 5, activation=’tanh’) %>%

layer_global_max_pooling_1d() %>%
layer_dropout(rate = 0.3) %>%

layer_dense(units = 3, activation = ’softmax’)
RT ×q0 has length T and q0 = 3 channels. For a CNN layer we have 
to choose the number of filters q1 ∈ N , the band width b ∈ N
and the filter weights W s ∈Rb×q0 , 1 ≤ s ≤ q1. A CNN layer is then 
given by a mapping

ψ : RT ×q0 → R(T −b+1)×q1 (4.3)

z 	→ ψ(z) = (
ψ1(z), . . . ,ψq1(z)

)
,

where each component ψs(z), 1 ≤ s ≤ q1, is a new univariate time 
series of length T − b + 1. Broadly speaking, these components are 
obtained by a convolution operation ∗ of the input z with the filter 
weights W s

z 	→ ψs(z) = φ (ws + W s ∗ z) ∈ RT −b+1, (4.4)

with bias ws ∈ R, φ : R → R is the chosen non-linear activation 
function, and the length of the time series is reduced by the band 
width from T to T − b + 1. We make a couple of remarks:

• The convolutional operation ∗ in (4.4) is slightly different from 
the classical mathematical convolution, because indexes are 
reversed compared to the mathematical version. For a precise 
definition of (4.4) we refer to formula (9.3) in Wüthrich and 
Merz (2021).

• A CNN layer involves q1(1 + bq0) parameters (biases and filter 
weights).

• We have used the default stride of 1, which implies sliding the 
window with step size 1.

• Typically, after a CNN layer one applies a so-called max-
pooling layer to reduce the size of the data. A max-pooling 
layer works very similar to a CNN layer, but the convolutional 
operation is replaced by considering the maximum in (dis-
joint) windows of a given band width; for details see Section 
9.2.4 in Wüthrich and Merz (2021).

• If the reduction in the length of the time series from T to 
T −b +1 is an unwanted feature, one applies padding, meaning 
that one fills both ends of the shortened time series with zeros 
back to the original length T .

To process our time series data z j ∈ RT ×3 given in (4.2) we 
compose three CNN layers ψ1, ψ3, ψ5 with band width b = 5 and 
filters q1 = 12, 10, 8, respectively. Each of these CNN layers is fol-
lowed by a max-pooling layer ψ2, ψ4, ψ6. This gives us a CNN 
architecture that maps the telematics time series data to an eight 
dimensional vector:

z j 	→ ψ(6:1)(z j) =
(
ψ6 ◦ ψ5 ◦ ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1

)
(z j) ∈ R8.

Listing 1 shows this CNN architecture. The CNN part ψ(6:1)(z j) ∈
R8 uses 192 + 610 + 408 = 1, 210 parameters, see Listing 3 in 
Gao and Wüthrich (2019). To prevent from overfitting, we apply a 
drop-out layer to these 8 neurons having a drop-out rate of 30%, 
see Listing 1. Finally, we apply a fully-connected dense layer that 
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Table 1
Individual trip allocation out-of-sample results on T .

true labels

driver A driver B driver C

predicted label A 33 4 0
predicted label B 8 38 6
predicted label C 1 5 36

% correct 78.6% 80.9% 85.7%

maps the 8 neurons to the 3 categorical outputs, this involves an-
other 27 parameters. We use for this output the softmax activation 
to ensure that we obtain categorical probabilities adding up to 1, 
this corresponds to the inverse of the canonical link in the multi-
nomial logistic classification model. This network architecture is 
fitted to the data using a variant of the gradient descent algorithm 
and back-propagation.

4.3. Fitting and results

We fit the network architecture of Listing 1 to the available 
telematics data (Y j, z j) j of the three drivers. In total we have 652 
individual trips of these 3 car drivers A, B and C. We partition this 
data at random into a learning data set L which receives 521 in-
dividual trips and a test data set T that contains the remaining 
131 trips. We fit the CNN architecture only on L and we use T
for the out-of-sample analysis. The learning data L is further split 
into a training data set U and a validation data set V at ratio 4:1 
to fit the architecture on U and to track over-fitting on V . We use 
a callback to retrieve the model with the lowest validation loss on 
V , we refer to Section 7.2.3 and Figure 7.7 in Wüthrich and Merz 
(2021) for this fitting strategy. The fitting of this architecture takes 
roughly 40 seconds on a standard personal laptop.

Table 1 gives the out-of-sample results on T of this classifica-
tion problem. We observe that roughly 80% of the trips have been 
correctly allocated; a purely random allocation would be correct 
in 33.3% of the cases. This result is quite remarkable as we have 
trained this network architecture on only 521 individual trips of 
a total length of 180 seconds. Moreover, we did not apply much 
fine-tuning to the network nor did we pay special attention during 
the data cleaning. Thus, this network architecture learns structure 
from the individual telematics time series data that allows to dis-
criminate the drivers A, B and C rather accurately. To verify these 
results we have performed the same analysis on different sets of 
drivers, Table 2 shows the results of 3 other drivers called D, E and 
F, which confirms the results.

Remarks.

• The 180 seconds have been chosen at random from the en-
tire (bigger) trips to ensure that the network does not learn 
a frequently traveled route (which may always have the same 
speed pattern). The results are stable w.r.t. different random 
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Table 2
Individual trip allocation out-of-sample results on T .

true labels

driver D driver E driver F

predicted label D 43 12 2
predicted label E 5 64 5
predicted label F 4 2 51

% correct 82.7% 82.1% 87.9%

choices of these 180 seconds, and Table 2 also verifies that we 
have stability w.r.t. other selected drivers.

• The main drawback of these results (and of networks in gen-
eral) is that we cannot say why the networks manage to solve 
this task so successfully. That is, we do not know according 
to which features the network has learned to discriminate the 
drivers. Unfortunately, we do not have better telematics data 
to explore this question, e.g., it would be interesting to know 
how the vehicle model or different road types influence this 
classification task.

• We use 180 seconds of driving experience for this classifica-
tion. This is rather short but already sufficient to classify the 
trips. For claim frequency prediction we prefer to work with 
longer observation periods, in fact, we would like to consider 
maximal information to capture, e.g., as many hard braking 
and acceleration events as possible.

4.4. What’s next?

In the previous section we have shown that we can allocate in-
dividual car driving trips rather successfully to the right driver. Of 
course, from an actuarial viewpoint this is very interesting because 
it also means that we can distinguish different driving styles. Thus, 
a natural next extension is to score individual car driving trips ac-
cording to driving styles, which then directly relates to propensity 
to claims and to the corresponding insurance prices. In Section 5.5, 
below, we discuss such an approach and we also describe the dif-
ficulties dealing with individual trip scoring.

Up to here, we have considered telematics data through the 
lenses of a machine learner and a statistician, and we have be-
come very excited about how accurately we can perform predic-
tion based on telematics data. However, at this stage we should 
also put on our professional actuarial glasses, as this transparency 
in data will raise privacy concerns of policyholders. It seems that 
it is comparably easy to identify people, their state of driving and 
health, as well as their daily routine using this telematics data. 
E.g., this data will display whether someone regularly visits a pub 
in the evening by car, as the driving style will slightly change 
on the way home; it will show which family member drives a 
particular trip in the family car; or such data may be used to 
preclinical diagnose an Alzheimer disease, see Bayat et al. (2021). 
Therefore, at this stage, we have to have clear legal rules to deal 
with associated privacy concerns of customers, and the ownership 
of the data needs to be discussed and clarified. These are gen-
eral questions that concern our society and are beyond statistical 
modeling, but need a broader political and legal discussion and 
consensus.

5. Using telematics data for claims frequency prediction

The purpose of this section is to indicate the predictive power 
of telematics car driving data to forecast claim frequency. As men-
tioned in Section 2, classical actuarial covariates may serve as 
proxies for driving habits and driving styles. These classical covari-
ates are now complemented with telematics data which directly 
records driving behavior. Telematics data can be incorporated into 
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a claims frequency model via various formats such as summary 
statistics, scores of dangerous maneuvers, v-a heatmaps, time se-
ries, etc. In this section we mainly focus on an automated feature 
engineering of heatmaps, i.e., representation learning on telematics 
data, and we briefly discuss risk scoring of time series of individual 
trips. This section describes similar models to those presented in 
Gao et al. (2022) and Meng et al. (2022). Remark that the results in 
these two papers are not directly comparable since they are based 
on different volumes of telematics data. Here, we make the results 
comparable by using the same telematics data as in Meng et al. 
(2022). Moreover, we also incorporate change in direction �, that 
is, we also consider v-� heatmaps.

5.1. Available claims data and Poisson claims count regression modeling

We first summarize the available data used in Meng et al. 
(2022). The data comes from n = 1, 847 motor third-party liability 
(MTPL) insurance policies with a risk exposure from 01/01/2014 
to 19/06/2017. We denote the time exposure of policy 1 ≤ i ≤ n
by vi > 0 and the (observed) number of claims on that policy 
by Ni . The total exposure over all policies is 

∑n
i=1 vi = 4, 214.65

years-at-risk, thus, these policies have an average exposure of 
2.28 years. The average observed annual claim frequency is μ̄ =∑n

i=1 Ni/ 
∑n

i=1 vi = 0.22, i.e., one out of four car drivers suffers an 
accident within a given year. Similar to Section 4.3, this data is 
then partitioned into a learning data set L and a test data set T . 
Model fitting only takes place on the learning data L, and the test 
data set T is used for an out-of-sample generalization analysis. We 
use the same partition as in Table 1 of Meng et al. (2022).

Each insurance policy 1 ≤ i ≤ n is further supported by covari-
ates (xi, zi), where xi describes the classical actuarial covariates in 
tabular form, and zi describes the telematics information, we re-
fer to Section 2. The goal is to model the number of claims Ni of 
each of these car drivers, given covariate information (xi, zi). We 
therefore assume existence of a regression function that captures 
the systematic effects in the claims

(x, z) 	→ μ(x, z) > 0,

such that for all car drivers 1 ≤ i ≤ n we have an expected number 
of claims

E [ Ni| xi, zi] = μ(xi, zi)vi .

A common assumption then is that the numbers of claims Ni are 
independent across all car drivers and they can be modeled by a 
Poisson regression model

Ni
ind.∼ Poi (μ(xi, zi)vi) , for 1 ≤ i ≤ n and exposure vi > 0.

(5.1)

The case of only using classical actuarial covariates μ(x, z) =
μ(x) has been studied extensively in the actuarial literature. Typ-
ical approaches use a GLM, a generalized additive model (GAM), 
a neural network or a tree boosting approach. Our main focus, 
here, is on integrating telematics data z that is not necessarily in 
tabular form.

For an out-of-sample model evaluation, i.e., a generalization 
analysis of an estimated model μ̂, which has been received on the 
learning data L, we consider the Poisson deviance loss (scoring 
function) on the test data T that takes the following form

L (μ̂;T ) = 2

|T |
∑
i∈T

Ni

(
μ̂(xi, zi)vi

Ni
− 1 − log

(
μ̂(xi, zi)vi

Ni

))
≥ 0, (5.2)
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Table 3
Generalization analysis: out-of-sample test error on T of the models studied.

Error
Null Classical C+VA C+VA+VD VA VA+VD C+T

(5.4) (5.3) (5.7) (5.10) (5.9) (5.11) (5.15)

Test error 1.1003 1.0306 1.0128 0.9982 1.0616 1.0381 1.0286
Reduction – 0.0697 0.0875 0.1021 0.0387 0.0622 0.0717

where we set the terms with Ni = 0 equal to 2μ̂(xi, zi)vi . Typi-
cally, the model with the smallest out-of-sample loss L(μ̂; T ) is 
preferred; for a decision-theoretic approach of model validation we 
refer to Gneiting and Raftery (2007), Gneiting (2011), Krüger and 
Ziegel (2021) and Section 4.1 of Wüthrich and Merz (2021); de-
viance loss (5.2) gives a proper scoring rule according to Gneiting 
and Raftery (2007).

5.2. Benchmark: Poisson GLM with classical actuarial covariates

As base case we fit a Poisson GLM on the classical actu-
arial covariates x by setting expected frequency λ(x) := μ(x) =
μ(x, z), i.e., we drop telematics information z. We pre-process 
the available categorical covariates of ‘region’, ‘car_brand’ 
and ‘gender’, and the continuous covariates of ‘driver_age’, 
‘car_age’, ‘seat_count’, ‘car_price’ and ‘av_daily_dist’ 
(average daily distance), so that they fit the regression structure 
of a GLM. In particular, we merge regions with small exposures, 
categorize the 66 different car brands into 6 different vehicle 
classes according to the country of origin, called ‘car_made’ in 
the sequel. We check the log-linearity of continuous variables us-
ing marginal generalized additive models. We remove the non-
significant covariates of ‘seat_count’ and ‘car_price’, keep 
the log-linear covariates of ‘car_age’ and ‘av_daily_dist’. We 
categorize ‘driver_age’ into ‘age_group’ because driver’s age 
does not have a monotone influence on the expected claims fre-
quency. We also refer to Chapter 5 in Wüthrich and Merz (2021)
on covariate engineering within GLMs. The pre-processed covari-
ates then provide us with feature information

x = (1,region,car_made,gender,age_group,car_age,

av_daily_dist) ∈ X ⊂ {1} ×Rq.

Under the general setting (5.1), the regression function of a 
classical Poisson GLM has the following structural form

(x, z) 	→ μ(x, z) = λ(x) = exp〈β, x〉, (5.3)

where we choose the log-link (the canonical link of the Poisson 
model) with regression parameter β ∈Rq+1 and covariates x ∈ X . 
This model is fitted on the learning data L. The resulting GLM has 
an out-of-sample Poisson deviance loss on T of 1.0306, see Ta-
ble 3. Furthermore, we could analyze this fitted model, e.g., by the 
Wald test checking for possible variable reduction, etc. We bench-
mark the GLM with the null model that does not consider any 
covariates

μ̄ =
∑

i∈L Ni∑
i∈L vi

= 0.22. (5.4)

The null model has an out-of-sample loss of 1.1003. Thus, the GLM 
has a clearly better out-of-sample predictive performance, this jus-
tifies the inclusion of classical actuarial covariates x.

Remark. We work in a low-frequency problem, here, where the 
event of a claim is by far more rare than not observing any claim. 
As a result, loss figures are mainly driven by the pure randomness 
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of the random variables (irreducible risk), and model improve-
ments are of a smaller magnitude in loss evaluations. Considering 
the Poisson deviance losses, probably slightly more than 1 should 
be allocated to the irreducible risk, and 0.1 should be allocated to 
model error in the null model in Table 3. The Poisson deviance loss 
can also be used to estimate a dispersion parameter (after adjust-
ment for the degrees of freedom), in our case this Poisson deviance 
loss is slightly bigger than 1, which indicates slight over-dispersion. 
This might be implied by model error or insufficient covariate in-
formation.

5.3. A representation of telematics data: speed-acceleration heatmaps

In a second step we enrich GLM (5.3) by telematics car driv-
ing information z. The telematics data used is collected by the 
black box devices installed in the selected cars. We have different 
volumes of telematics data for different cars since the black box 
device can be installed anytime during the exposure period from 
01/01/2014 to 19/06/2017. We use the same telematics data as in 
Meng et al. (2022). An assumption made here is that the driving 
behavior does not change during the observation period. This as-
sumption seems reasonable since our portfolio contains more ma-
ture drivers. If one only studies less experienced (young) drivers, 
this assumption will be violated. Because telematics data is not 
in tabular form, we start by pre-processing telematics information 
so that we can use it for regression modeling. A first approach 
is the speed-acceleration (v-a) heatmap, it has its name from the 
graphical illustrations in Wüthrich (2017). In general, we can com-
press any amount of individual telematics car driving data into 
a v-a heatmap with fixed size. This v-a heatmap describes how 
a driver accelerates and decelerates at different speeds. A second 
more granular approach will be described in Section 5.5.

We briefly discuss how to construct a v-a heatmap. In a nut-
shell, it is similar to a two-dimensional histogram. In a v-a rect-
angle R = [10, 60] km/h×[−4, 4] m/s2, the acceleration interval 
is divided into 1 ≤ j ≤ 9 sub-intervals [−4, −3.5), [−3.5, −2.5), 
[−2.5, −1.5), . . ., [1.5, 2.5), [2.5, 3.5), [3.5, 4], and the speed in-
terval is partitioned into 1 ≤ k ≤ 5 equally spaced sub-intervals 
[10, 20), [20, 30), . . . , [50, 60]. Note that Meng et al. (2022) trun-
cate speed within [10, 60] km/h and censor the acceleration within 
[−4, 4] m/s2.

We define the acceleration pattern of driver 1 ≤ i ≤ n in speed 
sub-interval 1 ≤ k ≤ 5 by

zi, j,k = ti, j,k∑9
j=1 ti, j,k

≥ 0, (5.5)

where ti, j,k ≥ 0 is the total amount of time spent in speed sub-
interval 1 ≤ k ≤ 5 and acceleration sub-interval 1 ≤ j ≤ 9. The 
resulting vector (zi,1,k, . . . , zi,9,k)

� defines a discrete distribution 
for fixed i and k. These discrete distributions are summarized for 
each driver i in the following 9 × 5 matrix, called v-a heatmap,

zi = (zi, j,k)1≤ j≤9, 1≤k≤5 ∈ [0,1]9×5. (5.6)

Thus, zi describes a spatial object that can be interpreted as an 
image. In image recognition such an object zi is represented by 
a three-dimensional array (tensor) zi ∈ [0, 1]9×5×1. The first two 
components correspond to the ( j, k) location in the image and the 
third component to the channels. This is similar to Section 4.2, 
where, here, we extend the time-series object to a spatial object, 
and where we have only one channel. Similarly, we can construct 
a v-� heatmap denoted by u ∈ [0, 1]9×5×1, where the v-� rect-
angle [10, 60] km/h×[−45, 45]◦ is divided into 45 equal area sub-
rectangles.

Fig. 6 gives these v-a heatmaps (5.6) for two selected drivers. 
We observe an obvious contrast between these two drivers, the 
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Fig. 6. v-a heatmaps of the two drivers with the highest and lowest telematics risk factors ρ(z) in equation (5.7) in the test data; the colors reflect the magnitudes of 
zi, j,k ∈ [0, 1].

Fig. 7. The corresponding v-� heatmaps for the two selected drivers with the v-a heatmaps in Fig. 6; the colors reflect the magnitudes of ui, j,k ∈ [0,1].
first driver seems to be an aggressive driver having hard accel-
eration and deceleration, whereas the second driver seems more 
moderate, especially in the high speed region; the color scale re-
flects the magnitudes of zi, j,k ∈ [0, 1]. Later in Section 5.4, we show 
that these two drivers have the highest and lowest telematics risk 
factors, respectively. Fig. 7 gives the corresponding v-� heatmaps 
for the same drivers as in Fig. 6. For the change of direction pat-
tern we do not observe such a strong contrast as in Fig. 6.

5.4. Boosting the GLM with heatmaps

We extend GLM (5.3) by telematics information. We make the 
following multiplicative assumption

E [ Ni| xi, zi] = μ(xi, zi)vi = λ(xi)viρ(zi) = exp〈β, xi〉viρ(zi),

thus, we multiply the GLM term λ(xi)vi considering classical co-
variates xi and exposure vi with a term ρ(zi) collecting the telem-
atics information zi . We postulate this multiplicative structure, let 
us comment on this. Ideally, the classical actuarial covariates x and 
the telematics covariates z interact in a more sophisticated way 
than in the multiplicative structure as above. The difficulty here is 
that we only have data of n = 1, 847 car drivers, and this limits 
the choices of regression functions because more complex regres-
sion functions cannot be estimated reliably.

In fact, we restrict even more. Namely, we use a two-step fit-
ting strategy by first fitting the GLM (5.3) neglecting telematics 
information. This gives us an estimated GLM regression parameter 
β̂ ∈ Rq+1. In a second step, we boost this fitted GLM by telem-
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atics data z, and letting β̂ be fixed, thus, we consider regression 
function in the second step

(x, z) 	→ μ(x, z) = λ̂(x)ρ(z) = exp〈β̂, x〉ρ(z), (5.7)

where we fit the telematics risk factor ρ(z) in this second step 
by a CNN exploring the v-a heatmap information z, and using 
exp〈β̂, x〉 as a non-trainable offset. The chosen CNN architecture is 
shown in Listing 2, consisting of two CNN layers ψ1 and ψ2, one 
flatten layer ψ3 and one fully-connected dense layer ψ4 providing 
us with a mapping from the v-a heatmap z to the telematics risk 
factor

ρ : [0,1]9×5×1 → R+, z 	→ ρ(z) =
(
ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1

)
(z);

(5.8)

we also refer to Section 4.2. We use hyper-parameters q1 = 8 and 
q2 = 2 for this architecture. It reduces the 9 × 5 × 1 dimensional 
input tensor to the one-dimensional telematics risk factor ρ(z) ∈
R+ .

This model is then calibrated to the available learning data L
where we further split this data to a training data set U and a val-
idation data set V to track over-fitting. The fitting is rather fast, 
taking a couple of seconds on a personal computer. The out-of-
sample analysis on the test data T shows that the telematics risk 
factor ρ(z) improves the generalization error of the GLM from 
1.0306 to 1.0128, see model ‘C+VA’ in Table 3. Thus, these v-a
heatmaps zi clearly contain information beyond the classical co-
variates xi that improves the predictive performance of our model. 
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Listing 2: CNN architecture for boosting the GLM with v-a heatmaps (5.7).

build_model_cnn<-function(height,width,q1,q2){
### input layer
heatmap<-layer_input(shape=c(height,width,1),

dtype = "float32", name="heatmap")
vol<-layer_input(shape=c(1),dtype = "float32",name="vol")

### convolutional neural network
Heatmap_Network = heatmap %>%

layer_conv_2d(filters=q1, kernel_size=c(height,1),
activation="tanh", strides = 1, name="heatmap_conv1") %>%

layer_conv_2d(filters=q2, kernel_size=c(1,1),
activation="tanh", strides = 1, name="heatmap_conv2") %>%

layer_flatten(name="heatmap_flat") %>%
layer_dense(units=1, activation="exponential", name="heatmap_factor",

weights=list(array(c(0), dim=c(q2*width,1)), array(0, dim=c(1))))

### response
Response = list(Heatmap_Network,vol) %>%

layer_multiply (name="response",trainable = F)

### compile model
model<-keras_model(inputs=c(heatmap,vol),outputs=c(Response))
model %>% compile(optimizer=optimizer_adam(), loss="poisson")
model

}

In a separate analysis we have seen that such a model combining 
xi and zi is better than a model only considering zi (model ‘VA’ in 
Table 3):

z 	→ μ(z) = μ̄ρ(z), (5.9)

where μ̄ is the estimated claims frequency from the null model 
(5.4). The reason may be that classical covariate information can 
explain under which circumstances the telematics data has been 
collected, e.g., the same driving style may more likely cause an 
accident downtown than in a rural region.

We interpret the telematics risk factor ρ(z). Firstly, the two-
step approach of first fitting a GLM and then building the telem-
atics risk factor around this GLM corresponds to the combined 
actuarial neural network (CANN) model proposed by Wüthrich and 
Merz (2019). We have used this here for stability reasons, but, 
beyond that, it allows us to isolate the information from the telem-
atics v-a heatmap z. Fig. 8 shows this telematics risk factor ρ(z)
ranging from 0.6 to 1.6. This decreases or increases the estimated 
expected frequencies in the range of −40% to +60% compared to 
only considering the classical actuarial covariates in a GLM. Of 
course, this can be seen as experience rating, as we correct ini-
tial information (like age and gender) with posterior information 
summarizing driving experience. Unlike densely connected neural 
networks, the convolutional neural network is not a black box, and 
there are many visualization tools to understand how it works, e.g., 
the class activation map of Selvaraju et al. (2017) can be used. Gao 
et al. (2022) interpret it by studying the network weights and find 
that hard braking in low speeds contributes most to a high telem-
atics risk factor.

We further boost model (5.7) with v-� heatmaps in a similar 
fashion, i.e., in a three-step strategy. With estimated λ̂ and ρ̂ in 
the first two steps, we consider regression function in the third 
step

(x, z, u) 	→ μ(x, z, u) = λ̂(x)ρ̂(z)ϕ(u), (5.10)

where we model the second telematics risk factor ϕ(u) by the 
same CNN architecture as shown in Listing 2. As shown in Table 3
the test error of 0.9982 (‘C+VA+VD’) is the lowest among the mod-
els studied. From this we conclude that the v-� heatmaps com-
195
Fig. 8. The distribution of ρ(z) on the test data set T .

plements the v-a heatmaps. Finally, we compare with the model 
which only considers the two telematics heatmaps z and u:

(z, u) 	→ μ(z, u) = μ̄ρ̂(z)ϕ(u). (5.11)

The test error of 1.0381 (larger than 0.9982) shown in Table 3
(‘VA+VD’) indicates that classical actuarial covariates complement 
telematics heatmaps, and we need both information.

Because our portfolio is very small, we perform a sensitivity 
analysis. We alternatively calculate the test error for 5 mutual 
exclusive test data sets, i.e., we perform a sort of K = 5 cross-
validation. The results are listed in Table 4. Our previous state-
ments and conclusions are supported by this sensitivity analysis. 
Another observation is that it seems that the improvement due to 
the v-� heatmap is rather weak in 3 out of 5 test data sets; see 
columns ‘VA’ and ‘VA+VD’. We believe that the partition in v-�
might not be suitable. A better way is to first investigate their 
continuous joint distribution and then determine an appropriate 
discretization.
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Table 4
Sensitivity analysis: out-of-sample test error on T of the models studied.

test index
Null Classical C+VA C+VA+VD VA VA+VD C+T

(5.4) (5.3) (5.7) (5.10) (5.9) (5.11) (5.15)

1 1.1095 1.0981 1.0981 1.0966 1.1040 1.1040 1.0918
2 1.1003 1.0306 1.0128 0.9982 1.0616 1.0381 1.0286
3 1.0949 1.0641 1.0431 1.0330 1.0625 1.0465 1.0439
4 1.0952 1.0721 1.0675 1.0675 1.0666 1.0666 1.0654
5 1.0996 1.0318 1.0266 1.0266 1.0719 1.0718 1.0268

Remark. We do not incorporate contextual information such as 
road types, weather, regions, driving times in this predictive model. 
These predictors can be included in a multivariate compositional 
form, i.e., the proportion of duration/distance on different road 
types/weather/regions/daytimes, we refer to Paefgen et al. (2014)
and Verbelen et al. (2018) for a thorough analysis. One limitation 
of heatmaps is that we need sufficient telematics data to obtain a 
stable representation, and the modeling procedure cannot be eas-
ily adjusted for insufficient telematics data. Moreover, we need to 
assume a stationary situation, because heatmaps react more slowly 
to changes as they reflect data in aggregated form.

5.5. Other ways of using telematics data

With heatmaps, we aggregate telematics data of multiple trips 
into a two dimensional distribution. Sometimes, it is desirable to 
evaluate driving risk associated with each trip, e.g., how phone 
usage interacts with driving behavior and how driving behavior 
changes with time. This motivates our next approach where we 
use time series of individual trips for claims frequency prediction. 
For a more detailed treatment, we refer to Meng et al. (2022). One 
major concern with individual trips is that trips are not labeled as 
risky or safe. Inspired by Section 4, we select 10 archetypal risky 
drivers Lr ⊂L who caused the most claims in our learning portfo-
lio, and we select 10 archetypal safe drivers Ls ⊂ L who have the 
longest exposures without any claims. We label their trips as po-
tentially risky (coded as 1) and potentially safe (coded as 0). More 
specifically, the j-th trip of archetypal driver i ∈ Lr ∪Ls is a mul-
tivariate time series of length T = 300 seconds, denoted by

zi, j =
(
(vi, j,1,ai, j,1,�i, j,1,a2

i, j,1,�
2
i, j,1)

�, . . . ,

(vi, j,T ,ai, j,T ,�i, j,T ,a2
i, j,T ,�2

i, j,T )�
)� ∈RT ×5,

for j = 1, . . . , J i . These trips are labeled with responses Yi, j ∈
{0, 1} for i ∈Lr ∪Ls and j = 1, . . . , J i . Compared to (4.2), we have 
extended from 180 to 300 seconds, and we have added the squares 
of acceleration a2

i, j,t and change in direction �2
i, j,t to improve 

model performance; from the universality approximation theorem 
point of view this may not be necessary, but it improves network 
fitting on finite samples.

After normalizing the time series zi, j into [−1, 1] with the Min-
MaxScaler, a one-dimensional CNN is calibrated to classify those 
binary labeled trips

ψ : [−1,1]T ×5 → (0,1), z 	→ ψ(z). (5.12)

The calibrated CNN ψ̂ is then employed to evaluate risk scores 
of the J i individual trips for each driver i = 1, . . . , n. For compu-
tational reasons, the number of evaluated individual trips is con-
strained to J i ≤ 500. Based on this, we calculate the average risk 
score of each driver i

ψ̄i = 1

J i

J i∑
ψ̂(zi, j), (5.13)
j=1
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which is an estimate of a true risk score νi . To reduce volatility, we 
apply the limited fluctuation credibility model, see Section 17.2 of 
Klugman et al. (2012). We quantify the credibility of the average 
risk scores (5.13). The standard of full credibility (in terms of num-
bers of individual trips) for average risk score ψ̄i is computed as

J ( f )
i (α, r) =

(

−1(1 − α/2)

r

)2 (
σi

νi

)2

, (5.14)

where 
−1 is the inverse of standard normal distribution function. 
We select significance level α = 10% and fluctuation level r = 10%, 
and we estimate the standard deviation σi and the mean νi by the 
sample deviation and sample mean of (ψ̂(zi, j)) j=1: J i , respectively. 
If the number of individual trips J i for driver i does not meet this 
minimal standard of full credibility (5.14), i.e., J i < J ( f )

i , we use 
the following credibility average risk score instead

ψ̃i = Ziψ̄i + (1 − Zi)ν̂,

where

Zi = min

(
1,

√
J i

J ( f )
i

)
is the partial credibility, see Section 17.4 of Klugman et al. (2012), 
and ν̂ is the estimated overall risk score ν̂ = 1/n 

∑n
i=1 ψ̄i . We draw 

the histogram of the standard of full credibility ( J ( f )
i )i=1:n and the 

histograms of the partial credibility Zi in Fig. 9, which indicates 
that most drivers meet the standard of full credibility J ( f )

i . Indeed, 
there are 1, 816 out of n = 1, 847 drivers satisfying the standard of 
full credibility. The averaged standard of full credibility is around 
200 individual trips that is comparable to the required minimal 
volume of three months’ telematics data for stable v-a heatmaps 
(in average two trips per day); see Gao et al. (2019a). Remark that 
by this credibility approach we do not require a minimal volume 
of telematics data.

We select for driver i telematics information zi = (zi, j)1≤ j≤ J i . 
We incorporate the credibility average risk score into the Poisson 
regression model (5.1) with the regression function given by

(xi, zi) 	→ μ(xi, zi) = λ̂(xi)ρ(zi) = exp〈β̂, xi〉ρ(zi), (5.15)

where ̂β is the GLM estimate in (5.3), and the telematics risk factor 
ρ(zi) is related to the credibility average risk score defined by

logρ(zi) = α0 + α1φ̃i . (5.16)

The parameters α0 and α1 are estimated in a Poisson GLM with 
offset vi λ̂(xi) on the learning data set L. The resulting out-of-
sample Poisson deviance loss is 1.0286; see column ‘C+T’ of Ta-
ble 3. It is better than the GLM only considering classical covariates 
(1.0306), but worse than in the model based on the v-a heatmaps 
(1.0128). Remark that, although we consider one additional telem-
atics variable of direction change, we get a worse out-of-sample 
prediction than the model based on the v-a heatmap. However, 
this comparison is not conclusive since we have a rather small 
portfolio, and because selection of archetypal drivers needs more 
exploration. In Table 4 on the sensitivity analysis, 3 out of 5 test 
errors for model (5.15) are comparable to model (5.10) consider-
ing both classical covariates and two heatmaps, indicating that the 
time series approach is not necessarily worse than the heatmap 
approach.

Remark. We have investigated how individual trip risk score 
changes over time for each archetypal driver, and there is no ob-
vious change or trend for any of the selected archetypal drivers. 
Another interesting metric is the standard deviation of individual 
trip risk scores, and we do not observe any change or trend in 
their standard deviations either. This may be due to a relatively 
short period. Also most drivers are experienced mature drivers, 
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Fig. 9. The standard of full credibility ( J i)
( f )
i=1:n and the histogram of partial credibility Zi .
and their driving skills may be already stabilized. We do not have 
contextual information such as phone usage, weather, traffic flow, 
road type for our data. If this information was available (e.g. in 
smart phone-based telematics data), one could investigate their 
interaction with driving behavior.

5.6. Summary

We have presented two different ways of making telematics 
time series data useful for claims prediction. In the first approach 
we have aggregated telematics time series data into telematics 
heatmaps, and statistical modeling has been exploring these ag-
gregated statistics. In the second approach we have scored each 
trip individually, and statistical modeling has been exploring these 
individual scores for claims prediction. Both ways aim at reducing 
the complexity and size of the telematics data in a first step, before 
entering the regression model. Since this first step of information 
extraction may not be optimal, the selected statistics may focus on 
wrong properties in the data. Therefore, we can think of a third 
way of directly working on the raw telematics data and letting the 
machine learning methods perform representation learning. This 
sounds very appealing, however, it may be computationally too 
demanding because this will require that many TBs of data are 
processed simultaneously by the machine learning model. This is 
still out of scope at the current stage of model development and 
computational power, for this reason, we rely on the first two pro-
posals.

6. Outlook

We have discussed two aspects of telematics data: transparency 
and its usefulness in claims frequency prediction. We mention pos-
sible extensions. One can construct other aggregate statistics, and 
use them to improve claims frequency prediction. Such approaches 
are based on first aggregating telematics information, and then 
working on the aggregated data, benefiting from the law of large 
numbers during aggregation. If we work with granular telematics 
data, we could also use recurrent neural networks for scoring indi-
vidual trips of varying lengths. The law of large numbers then only
197
comes into play in the next step where scores are aggregated in a 
regression model for claims frequency prediction.

In our approach we have paid attention to explainability by in-
troducing a telematics risk factor ρ(z) that can be interpreted and 
explained to management and customers. In recent machine learn-
ing research quite some efforts have been made in making ma-
chine learning solutions explainable. A different approach that has 
recently been taken by Richman and Wüthrich (2021) is to select 
an explainable network architecture in the first place. Besides ex-
plainability, this architecture also supports variable selection. Based 
on such a transparent network architecture it will become feasible 
to identify different driving features and behaviors that may help 
to improve driving styles. Moreover, we did not study any tem-
poral component, e.g., how driving styles of young drivers change 
when gaining more driving experience. In this context, also driv-
ing assistance tools play an increasingly important role in driving 
safety, potentially making telematics data non-stationary which, of 
course, provides a bigger challenge on the statistical side.

Our telematics data is received by the devices installed in cars. 
In practice, many insurance companies prefer to use smart phone-
based telematics data considering the expense of data collection. 
On the one hand, this will impose more challenges on the data 
cleaning side. On the other hand, smart phone-based data con-
tains more information such as road and weather condition, smart 
phone use, etc. Although not all of these variables can be used for 
insure pricing, they are related to accidents. Similar to Section 5.5, 
we could score each trip, extracting all the associated risk fac-
tors, and giving instant feedback to drivers through smart phones. 
This would promote driving safety and ultimately reduce the claim 
payments.
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Appendix A. An excerpt of telematics car driving data
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Table 5
Excerpt of telematics car driving data in the first seconds; for privacy reasons, we have removed the vehicle identification number and normalized GPS coordinates.

Time_Stamp GPS_Latitude GPS_Longitude GPS_Heading GPS_Speed Positional_Quality VSS_Speed Engine_RPM Accel_Lateral Accel_Longitudinal Accel_Vertical

1435622463 0 12 1419 -0.1 -0.2 9.6
1435622465 0 12 1419 -0.1 -1 9.6
1435622466 0 10 1152 -0.3 -0.7 9.5
1435622467 0 8 936 -0.1 -0.3 9.5
1435622468 0 8 936 -0.2 -0.6 9.7
1435622469 0 7 853 -0.2 0 9.6
1435622470 0 9 1287 -0.3 0.5 10.3
1435622471 0 0 170.6 7.3 1 15 1908 0.1 0.4 9.7
1435622472 -3.2e-05 8e-06 167.69 9.8 1 15 1908 -0.5 -0.7 9.5
1435622473 0.000304 -0.00104 149.19 14.3 1 14 1049 -0.1 0.3 8
1435622474 0 14 1049 -0.1 0.3 8
1435622475 0 15 1111 0 0.6 8.5
1435622476 0 17 1196 0.2 -0.6 9.6
1435622477 0 15 1079 0.1 -0.9 10
1435622478 0 15 1079 0 -0.6 9.7
1435622479 -9.6e-05 -0.00088 153.19 15.3 1 14 1007 0.5 -0.6 9.8
1435622480 -0.0001344 -0.00084 155.5 14.3 1 11 822 0.8 -0.4 9.4
1435622481 -0.0001856 -0.00084 159 12.5 1 11 822 1.5 0 9.6
1435622482 -0.0002688 -0.000584 176.3 11.1 1 13 1006 2.3 0.5 9.7
1435622483 -0.0002976 -6e-04 197.8 12.5 1 19 1389 1.1 0.5 9.6
1435622484 -0.00032 -0.000632 219.19 14.1 1 19 1389 0.6 0.7 9.6
1435622485 -0.0003456 -0.00068 228 16.3 1 24 1798 0 0.5 9.7
1435622486 -0.0003744 -0.000736 233.1 20.5 1 27 1811 0 -0.3 9.4
1435622487 -0.0005504 -0.000448 241.1 24.1 1 27 1811 0 0.1 9.7
1435622488 -0.0005792 -0.000528 241.89 27.1 1 30 1477 0 0.1 9.7
1435622489 -0.0006336 -0.000576 243.5 30.3 1 30 1477 0 0.7 9.7
1435622490 -0.0006848 -0.000648 243.6 32.5 1 32 1623 0 -0.3 9.6
1435622491 -0.0007232 -0.000744 243.3 34 1 35 1678 -0.1 -0.6 9.6
1435622492 -0.0008032 -0.000776 242.89 34 1 35 1678 0.1 -0.6 9.7
1435622493 -0.0008544 -0.000856 243.69 34.4 1 35 1672 0 -0.5 9.6
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