教学团队

教学团队

您当前的位置: 教学团队

杨翰方

职 称: 副教授


职 务:


电子邮箱: hyang@ruc.edu.cn

教育经历

佐治亚州立大学,统计学博士,风险管理硕士
同济大学,数学学士

工作经历

2016.08-至今 中国人民大学,统计学院,副教授
2012.09-2016.07 中国人民大学,统计学院,讲师

基金项目

项目主持人 国家自然科学基金青年科学基金项目(11501567), 二元分类评估方法——pAUC及拓展, 2016.1-2018.12.

开设课程

投资学(2013-至今)大数据统计建模(2015-至今)金融计量学(2015-至今)大数据建模(2016 高礼)等

研究方向

数据科学与应用;

论文成果

软件:
1. Yang, H., et al. , R package: tpAUC .
第一作者论文:
10. Yang, H. and Zhao, Y. (2017+), Smoothed jackknife empirical likelihood for the one-sample difference of quantiles, Computational Statistics and Data Analysis, Accepted.
9. Yang, H., Ku, L., Lv, X. and Hu, F. (2017+), Two-Way Partial AUC and Its Properties, Statistical Methods in Medical Research, Accepted.
8. Yang, H. and Zhao, Y. (2017),Smoothed jackknife empirical likelihood for the difference of two quantiles, Annals of the Institute of Statistical Mathematics, 69, 1059–1073.
7. Yang, H., Ku, L. and Zhao, Y. (2017), A nonparametric approach for partial areas under ROC curves and ordinal dominance curves, Statistica Sinica, 27, 357-371.
6. Yang, H., Liu, S. and Zhao, Y. (2016), Jackknife empirical likelihood for linear transformation models, Annals of the Institute of Statistical Mathematics, 68, 1095–1109.
5. Yang, H. and Zhao, Y. (2015). Smoothed jackknife empirical likelihood inference for ROC curves with missing data. Journal of Multivariate Analysis, 140, 123–138.
4. Yang, H., Yau, C. and Zhao, Y. (2014). Smoothed empirical likelihood inference for the difference of two quantiles with right censoring. Journal of Statistical Planning and Inference, 146, 95–101
3. Yang, H. and Zhao, Y. (2013). Jackknife empirical likelihood for the difference of ROC curve, Journal of Multivariate Analysis, 115, 270–284.
2. Yang, H. and Zhao, Y. (2012). Smoothed empirical likelihood for ROC curves with censored data. Journal of Multivariate Analysis, 109, 254-263.
1. Yang, H. and Zhao, Y. (2012). New empirical likelihood inference for transformation model. Journal of Statistical Planning and Inference, 142(7), 1659-1668.
通讯作者论文:
1. Yang, H. (2015), Jackknife empirical likelihood inference for the mean absolute deviation, Computational Statistics & Data Analysis, 91-101. (with Zhao, Y. and Meng, X.)