A Class of Finite Mixture of Quantile Regressions with Its Applications
2019.06.06Yuzhu Tian, Manlai Tang, Maozai Tian
【Abstract】
Mixture of linear regression models provide a popular treatment for modeling nonlinear regression relationship. The traditional estimation of mixture of regression models is based on Gaussian error assumption. It is well known that such assumption is sensitive to outliers and extreme values. To overcome this issue, a new class offinite mixture of quantile regressions (FMQR) is proposed in this article. Compared with the existing Gaussian mixture regression models, the proposed FMQR model can provide a complete specification on the conditional distribution of response variable for each component. From the likelihood point of view, the FMQR model is equivalent to the finite mixture of regression models based on errors following asymmetric Laplace distribution (ALD), which can be regarded as an extension to the traditional mixture of regression models with normal error terms. An EM algorithm is proposed to obtain the parameter estimates of the FMQR model by combining ahierarchical representation of the ALD. Finally, the iterated weighted least square estimation for each mixture component of the FMQR model is derived. Simulation studies are conducted to illustrate the finite sample performance of the estimation procedure. Analysis of an aphid data set is used to illustrate our methodologies.
【Keywords】
finite mixture of quantile regressions, EM algorithm, asymmetric laplace distribution, hierarchical likelihood