Parametric Bootstrap Inferences for Panel Data Models
2019.06.06Liwen Xu, Maozai Tian
【Abstract】
This article presents parametric bootstrap (PB) approaches for hypothesis testing and interval estimation for the regression coefficients and the variance components of panel data regression models with complete panels. The PB pivot variables are proposed based on sufficient statistics of the parameters. On the other hand, we also derive generalized inferences and improved generalized inferences for variance components in this article. Some simulation results are presented to compare the performance of the PB approaches with the generalized inferences. Our studies show that the PB approaches perform satisfactorily for various sample sizes and parameter configurations, and the performance of PB approaches is mostly the same as that of generalized inferences with respect to the expected lengths and powers. The PB inferences have almost exact coverage probabilities and Type I error rates. Furthermore, the PB procedure can be simply carried out by a few simulation steps, and the derivation is easier to understand and to be extended to the incomplete panels. Finally, the proposed approaches are illustrated by using a real data example.
【Keywords】
bootstrap resampling, coverage probability, generalized confidence intervals, parametric bootstrap pivotal variable, variance components