2018

Research / 2018

Research

Adaptive Composite Quantile Regressions and Their Asymptotic Relative Efficiency

2019.06.06

Ke Yang, Liping Zhu, Wangli Xu

【Abstract】

The composite quantile regression (CQR for short) provides an efficient and robust estimation for regression coefficients. In this paper we introduce two adaptive CQR methods. We make two contributions to the quantile regression literature. The first is that, both adaptive estimators treat the quantile levels as realizations of a random variable. This is quite different from the classic CQR in which the quantile levels are typically equally spaced, or generally, are treated as fixed values. Because the asymptotic variances of the adaptive estimators depend upon the generic distribution of the quantile levels, it has the potential to enhance estimation efficiency of the classic CQR. We compare the asymptotic variance of the estimator obtained by the CQR with that obtained by quantile regressions at each single quantile level. The second contribution is that, in terms of relative efficiency, the two adaptive estimators can be asymptotically equivalent to the CQR method as long as we choose the generic distribution of the quantile levels properly. This observation is useful in that it allows to perform parallel distributed computing when the computational complexity issue arises for the CQR method. We compare the relative efficiency of the adaptive methods with respect to some existing approaches through comprehensive simulations and an application to a real-world problem.

【Keywords】

adaptiveness, composite quantile regression, quantile regression, robustness, relative efficiency