教师队伍

您当前的位置: > 首页 > 教学团队 > 教师队伍

黄丹阳

职 称: 教授,博士生导师


职 务: 无


电子邮箱: dyhuang89@126.com

教育经历

2011-2015,北京大学光华管理学院,经济学博士 

2007-2011,中国人民大学统计学院,经济学学士


工作经历

2023-至今 中国人民大学统计学院,教授

2018-2023 中国人民大学统计学院,副教授 

2015-2018 中国人民大学统计学院,助理教授


兼任职务

2023-至今 中国现场统计研究会教育统计与管理分会,常务理事

2022-至今 北京市“千人进千企”专项行动首批专家服务团产业特派员

2019-至今 北京大数据协会副秘书长,常务理事 

2018-至今 青年统计学家协会,理事


基金项目

  • 大规模数据统计建模方法助力民营企业数字化转型研究,北京市社会科学基金重点项目,2024-2026,主持,在研

  • 金融数据合成与智能模型风险监测关键技术及应用,国家重点研发计划“社会治理与智慧社会科技支撑”重点专项,2024-2026,参与,在研

  • 中小微企业数字化发展中的统计模型方法研究,全国统计科学研究项目重点项目,2024-2025,主持,在研

  • 稀疏网络数据的建模,计算及应用, 国家自然科学基金面上项目,2021-2024,主持,在研 

  • 中国跨境支付监测体系战略研究,中国工程院咨询研究项目,2020-2021,参与,结项 

  • 多维数据流下的小微商户信用评估模型,中国人民大学科学研究基金面上项目,2019-2021,主持,在研 

  • 社交网络中的空间自回归模型:理论与应用研究,国家自然科学基金青年项目,2018-2020,主持,在研 

  • 大数据驱动的互联网信用评价模型,北京市社会科学基金青年项目,2018-2020,主持,结项 

  • 互联网信用评价中的非结构化数据融合研究,全国统计科学研究项目一般项目, 2017-2019,主持,结项 

  • 基于大规模社交网络的统计学模型,中国人民大学科学研究基金青年项目,2016-2017,主持,结项 

  • 互联网征信中的信用评分模型,横向课题,2016-2017,主持,结项


荣誉奖励

北京高校第十三届青年教师教学基本功比赛理科类二等奖,2023

中国人民大学教学标兵,2023

中国人民大学优秀科研成果一等奖,2023

中国人民大学第十二届青年教师教学基本功大赛一等奖(理科组第一名),2023

北京市科协青年人才托举工程,2023-2025

全国大学生市场调查与分析大赛总决赛一等奖优秀指导教师奖,2021,2023

中国人民大学“杰出青年学者”, 2020至今

中国人民大学优秀科研成果奖, 2020

北京市优秀人才培养资助,2017 


开设课程

商业应用分析实践,2020-至今 

数理统计,2018-至今 

时间序列分析,2018-至今 

统计学,2017-至今 

商务大数据案例分析,2016-至今 

随机分析选讲,2015


研究方向

超高维数据降维分析;

复杂网络建模;

分布式计算;

小微企业数字化


论文成果

  • Deng, J., Huang D.*, Zhang, B.(2024) Distributed Pseudo-Likelihood Method for Community Detection in Large-Scale Networks. ACM Transactions on Knowledge Discovery from Data, 18(7), 1-25.

  • Wu, S., Huang, D.*, Wang, H.*(2023) Quasi-Newton Updating for Large-Scale Distributed Learning. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 85(4), 1326-1354.

  • Deng, J., Huang D.*, Ding, Y., Zhu, Y., Jing, B., Zhang, B*.(2023)  Subsamping Spectral Clustering for Stochastic Block Models in Large-Scale Networks. Computational Statistics & Data Analysis, 189, 107835.

  • Huang, D., Hu, W.*, Jing, B., Zhang, B.* (2023) Grouped spatial autoregressive model. Computational Statistics & Data Analysis, 178, 107601.

  • Wang, F., Huang, D.*, Gao, T., Wu, S.*, Wang, H. (2022) Sequential One-Step Estimator by Subsampling for Customer Churn Analysis with Massive Datasets. Journal of the Royal Statistical Society:Series C (Applied Statistics), 71(5), 1753-1786.

  • Wu, S., Huang,D.*, Wang, H. (2022) Network Gradient Descent Algorithm for Decentralized Federated Learning. Journal of Business & Economic Statistics, 41(3), 806-818.

  • Hu, W., Huang, D.*, Jing, B., Zhang, B.* (2021) Crawling Subsampling for Multivariate Spatial Autoregression Model in Large-Scale Networks. Electronic Journal of Statistics, 15(2), 3678-3707. 

  • Zhu, Y., Deng, Q., Huang, D.*, Jing, B., Zhang, B.* (2021) Clustering based on Kolmogorov-Smirnov statistic with application to bank card transaction data. Journal of the Royal Statistical Society:Series C (Applied Statistics), 70(3), 558-578.

  • Wang, F., Zhu, Y., Huang, D.*, Qi. H., Wang, H. (2021) Distributed one-step upgraded estimation for non-uniformly and non-randomly distributed data. Computational Statistics & Data Analysis, 162, 107265.

  • Zhu, Y., Huang, D.*, Gao, Y., Wu, R., Chen, Y., Zhang, B., Wang, H. (2021) Automatic, Dynamic, and Nearly Optimal Learning Rate Specification via Local Quadratic Approximation. Neural Networks, 141,11-29. 

  • Huang, D., Zhu, X.*, Li, R., Wang, H. (2021) Feature Screening for Network Autoregression Model, Statistica Sinica, 31,1239-1259.

  • Zhu, X., Huang, D.*, Pan, R., Wang, H. (2020) Multivariate Spatial Autoregressive Model for Large Scale Social Networks, Journal of Econometrics, 215(2), 591-606.

  • Su, L., Lu, W.*, Song, R., and Huang, D. (2020) Testing and Estimation of Social Network Dependence with Time to Event Data. Journal of the American Statistical Association. 115(530), 570-582. 

  • Huang, D., Wang, F*., Zhu, X., Wang, H.(2020) Two-Mode Network Autoregressive Model for Large-Scale Networks. Journal of Econometrics, 216(1), 203-219.

  • Zhu, Y., Huang, D.*, Xu, W., & Zhang, B. (2020). Link prediction combining network structure and topic distribution in large-scale directed network. Journal of Organizational Computing and Electronic Commerce, 30(2), 169-185.

  • Chang X., Huang, D.*, Wang, H. (2019) A Popularity Scaled Latent Space Model for Large-Scale Directed Social Network. Statistica Sinica, 29(3), 1277-1299.

  • Huang, D., Lan, W., Zhang, H. H., & Wang, H. (2019) Least squares estimation of spatial autoregressive models for large-scale social networks. Electronic Journal of Statistics, 13(1), 1135-1165.

  • Huang, D., Guan, G.*, Zhou, J., Wang, H. (2018) Network-based Naive Bayes Model for Social Network. Science China Mathematics, 61(4), 627-640.

  • Huang, D., Zhou, J.*, and Wang, H. (2018) RFMS Method for Credit Scoring Based on Bank Card Transaction Data. Statistica Sinica, 28(4), 2903-2919.

  • Zhou, J., Huang, D.*, and Wang, H. (2017) A dynamic logistic regression for network link prediction. Science China Mathematics, 60, 165-176.

  • Huang, D., Yin, J., Shi, T., and Wang, H.* (2016) A statistical model for social network labeling. Journal of Business and Economic Statistics, 34(3), 368-374.

  • Huang, D., Li, R.*, & Wang, H. (2014) Feature Screening for Ultrahigh Dimensional Categorical Data with Applications. Journal of Business & Economic Statistics, 32(2), 237-244.

  • 朱映秋,黄丹阳,张波(2024)《基于高斯混合模型的分布因子聚类方法》,《统计研究》, 41(6), 147-160.

  • 黄丹阳,朱映秋,南金伶,王汉生(2022)《基于交易流水的信用卡套现交易及商户识别》,《数理统计与管理》,42(01), 127-144.

  • 黄丹阳,郭雁茹,姜光耀,田昆(2022) 《融合多维度线上特征的餐饮商户线下销售额分析》,《营销科学学报》, 1(2), 30-51.

  • 黄丹阳,张力文(2021)《基于局部社团结构平衡的双模符号网络链路预测研究》,《统计研究》,38(12),131-144.

  • 黄丹阳,毕博洋,朱映秋(2021) 《基于高斯谱聚类的风险商户聚类分析》,《统计研究》,38(6), 145-160.

  • 黄丹阳,毕博洋,苗玉茵(2020) 《双模网络下基于节点流行度的潜在空间模型》,《统计研究》,37(3), 60-71.

  • 王曾,符国群,黄丹阳,汪剑锋(2014)《国有企业CEO“政治晋升”与“在职消费”关系研究》,《管理世界》, 5, 157-171.

著作成果

黄丹阳,《大规模网络数据分析与空间自回归模型》,科学出版社,2022年 

吕晓玲,黄丹阳,《数据科学统计基础》,中国人民大学出版社,2021年