教师队伍

您当前的位置: > 首页 > 教学团队 > 教师队伍

张原

职 称: 副教授


职 务:


电子邮箱: zhang_probab@ruc.edu.cn

教育经历

Duke University 2010年8月-2015年5月 哲学博士

北京大学 2006年9月-2010年7月 理学学士


工作经历

中国人民大学 2022年-今 副教授

北京大学 2018年-2022年 助理教授/研究员

TAMU 2016年-2018年 Visiting Assistant Professor

UCLA 2015年-2016年 Assistant Adjunct Professor


基金项目

国家自然科学基金委员会,面上项目,12271010,有限随机交织研究,2023-01-2026-12,在研,主持

国家自然科学基金委员会,青年科学基金项目,11901012,带有边界条件的扩散限制凝聚模型(DLA) 研究,2020-01-2022-12,主持

国家重点研发计划,科技创新2030“新一代人工智能”重大项目(课题),部分可观测马尔科夫过程的随机规划算法,2018AAA0101004,2019.12-2022.12,骨干

国家重点研发计划,重大项目(课题),粒子系统与渗透模型,2020YFA0712902,2020-12-2025-11,93万元,在研,骨干

国家自然科学基金委员会,专项项目,82041023,2020-03-2022-03,参与

国家自然科学基金委员会,国家自然科学基金数学天元基金-数学与医疗健康交叉重点专项,面向儿童脑发育障碍性疾病的神经机制建模与辅助诊疗算法,12026606,2021-01-2021-12,100万元,参与

中国疾病预防控制中心委托“中国新型冠状病毒(新冠)疫苗优先使用策略模型研究”,2020/11-2020/12,参与


开设课程

2022年秋季学期:现代数学选讲


研究方向

随机空间过程、特别是扩散限制凝聚(DLA)模型以及随机交织(random interlacements) 模型;随机相互作用粒子系统、随机动力学模型及其在流行病学及社会科学的应用


论文成果

[1] Durrett, R., & Zhang, Y. (2014). Exact solution for a metapopulation version of Schelling's model. Proceedings of the National Academy of Sciences - PNAS, 111(39), 14036-14041. doi:10.1073/pnas.1414915111

[2] Durrett, R., Liggett, T., & Zhang, Y. (2014). The contact process with fast voting. Electronic Journal of Probability, 19 doi:10.1214/EJP.v19-3021

[3] Durrett, R., & Zhang, Y. (2015). Coexistence of grass, saplings and trees in the Staver–Levin forest model. The Annals of Applied Probability, 25(6), 3434-3464. doi:10.1214/14-AAP1079

[4] Lanchier, N., & Zhang, Y. (2016). Some rigorous results for the stacked contact process. Alea-Latin American Journal of Probability and Mathematical Statistics, 13(1), 193-222. doi:10.30757/ALEA.v13-08

[5] Liu, J., & Zhang, Y. (2016). Convergence of diffusion-drift many particle systems in probability under a Sobolev norm. (pp. 195-223). Cham: Springer International Publishing. doi:10.1007/978-3-319-32144- 8_10

[6] Liu, J., & Zhang, Y. (2016). Convergence of stochastic interacting particle systems in probability under a sobolev norm. Annals of Mathematical Sciences and Applications, 1(2), 251-299. doi:10.4310/AMSA.2016.v1.n2.a1

[7] Procaccia, E. B., & Zhang, Y. (2018). On covering paths with 3 dimensional random walk. Electronic Communications in Probability, 23 doi:10.1214/18-ECP160

[8] Procaccia, E. B., & Zhang, Y. (2019). Connectivity properties of branching interlacements. Alea-Latin American Journal of Probability and Mathematical Statistics, 16(1), 279-314. doi:10.30757/ALEA.v16-10

[9] Wang, C., Zhang, Y., Bertozzi, A. L., & Short, M. B. (2019). A stochastic-statistical residential burglary model with finite size effects. (pp. 245-274). Cham: Springer International Publishing. doi:10.1007/978- 3-030-20297-2_8

[10] Procaccia, E. B., & Zhang, Y. (2019). Stationary harmonic measure and DLA in the upper half plane. Journal of Statistical Physics, 176(4), 946-980. doi:10.1007/s10955-019-02327-y

[11] Wang, C., Zhang, Y., Bertozzi, A. L., & Short, M. B (2020). A stochastic-statistical residential burglary model with independent poisson clocks. European Journal of Applied Mathematics, , 1-27. doi:10.1017/s0956792520000029

[12] Procaccia, E. B., Rosenthal, R., & Zhang, Y. (2020). Stabilization of DLA in a wedge. Electronic Journal of Probability, 25 doi:10.1214/20-EJP446

[13] Procaccia, E. B., Ye, J., & Zhang, Y. (2020). Stationary DLA is well defined. Journal of Statistical Physics, 181(4), 1089-1111. doi:10.1007/s10955-020-02619-8

[14] Mu, Y. X., & Zhang, Y. (2020). On some threshold-one attractive interacting particle systems on homogeneous trees. Journal of Applied Probability, 57(3), 866-898. doi:10.1017/jpr.2020.38

[15] Procaccia, E. B., & Zhang, Y. (2020). On covering monotonic paths with simple random walk. Electronic Journal of Probability, 25, 1-39. https://doi.org/10.1214/20-EJP545

[16] Zhang, Y., You, C., Cai, Z., Sun, J., Hu, W., & Zhou, X. (2020). Prediction of the COVID-19 outbreak in china based on a new stochastic dynamic model. Scientific Reports, 10(1), 21522-21522. doi:10.1038/s41598-020-76630-0

[17]  张云俊, 张原, 尤翀,周晓华. (2020),新型冠状病毒肺炎(COVID-19)传染病传播动力学模型的综述, 中华医学科研管理杂志,33:网络预发表. DOI: 10.3760/cma.j.cn113565-20200214-00007

[18] 张原, 尤翀,蔡振豪,孙嘉瑞,胡文杰,周晓华. (2020),新冠肺炎(COVID-19)新型随机传播动力学模型及应用, 应用数学学报,43(2),440-451

[19] Procaccia, E. B., & Zhang, Y. (2021). On sets of zero stationary harmonic measure. Stochastic Processes and their Applications, 131, 236-252. doi:10.1016/j.spa.2020.09.007

[20] Cai, Z., Xiong, Y., & Zhang, Y. (2021). On (non-)monotonicity and phase diagram of finitary random interlacement. Entropy (Basel, Switzerland), 23(1), 69. doi:10.3390/e23010069

[21] Procaccia, E. B., Ye, J., & Zhang, Y. (2021). Percolation for the finitary random interlacements. Alea, 18(1), 265-287. https://doi.org/10.30757/ALEA.V18-12

[22] Wang, C., & Zhang, Y. (2021). A Multiscale Stochastic Criminal Behavior Model under a Hybrid Scheme. Electronic Research Archive, 29(4): 2741-2753. doi:10.3934/era.2021011

[23] Procaccia, E. B., Ye, J., & Zhang, Y. (2021). Stationary harmonic measure as the scaling limit of truncated harmonic measure. Alea, 18, 1529–1560. doi:10.30757/ALEA.v18-5

[24] Cai, Z., & Zhang, Y. (2021). Some Rigorous Results on the Phase Transition of Finitary Random Interlacement. Electronic Communications in Probability, 26: 1-11. doi: 10.1214/21-ECP424

[25]  You, C., Gai, X., Zhang Y., & Zhou X. (2021). Determining the Covertness of COVID-19 — Wuhan, China, China CDC Weekly, 3(8), 170-173. doi:10.46234/ccdcw2021.048

[26] Zhang, Y., You, C., Gai, X., & Zhou X. (2021) On the coexistence with COVID-19: estimations and perspectives. China CDC Weekly, 3(50): 1057-1061. doi: 10.46234/ccdcw2021.245

[27] Liu, J., Wang, Z., Xie, Y., Zhang, Y., & Zhou, Z. (2021). Investigating the integrate and fire model as the limit of a random discharge model: A stochastic analysis perspective. Mathematical Neuroscience and Applications, 1. https://doi.org/10.46298/mna.7203

[28] Liu, J., Wang, Z., Zhang, Y., & Zhou, Z. (2022). Rigorous justification of the Fokker-Planck equations of neural networks based on an iteration perspective. SIAM Journal on Mathematical Analysis, 54: 1270-1312 https://doi.org/10.1137/20M1338368

[29] Cai, Y., Wang, C., Zhang, Y. (2021). A multiscale stochastic criminal behavior model and the convergence to a piecewise-deterministic- Markov-process limit. Mathematical Models and Methods in Applied Sciences, 32(4): 619-645 DOI: 10.1142/S0218202522500142

[30] Wang, X., Cai, Y., Zhang, B., Zhang, X., Wang, L., Yan, X., Zhao X., Zhang, Y., Jia Z. (2022) Cost-effectiveness analysis on COVID-19 surveillance strategy of large-scale sports competition. Infectious Diseases of Poverty, 11, 32 (2022). https://doi.org/10.1186/s40249-022-00955-3

[31] Cai, Z., Han, X., Ye, J., & Zhang, Y. (2022). On chemical distance and local uniqueness of a sufficiently supercritical finitary random interlacement. Journal of Theoretical Probability. https://doi.org/10.1007/s10959-022-01182-0

[32] Cai, Z., Procaccia, E. B., & Zhang, Y. (2022). Continuity and uniqueness of percolation critical parameters in Finitary Random Interlacements. Electronic Journal of Probability. 27, 1-46. DOI: 10.1214/22-EJP824

[33] Mu, Y., Procaccia, E. B., & Zhang, Y. (2022). Scaling limit of DLA on a long line segment. Transactions of the American Mathematical Society. https://doi.org/10.1090/tran/8771

[34] Tan, Y., Zhang, Y., Cheng, X., Zhou, X. (2022). Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions. Scientific Reports. 12:  16630 https://doi.org/10.1038/s41598-022-18775-8

[35] 祁邦国, 于石成, 王琦琦, 张原, 刘楠堃, 谭枫. (2022) 我国早期新型冠状病毒肺炎疫情传染病动力学模型分析[J]. 疾病监测, 37(12):1588-1593.

[36] Cai, Z., & Zhang, Y. (2023). On the exact orders of critical value in Finitary Random Interlacements. Stochastic Processes and their Applications. 159, 391-427. https://doi.org/10.1016/j.spa.2023.02.008


所获奖励

北京大学第十九届青年教师教学基本功比赛 理工科类 一等奖

北京大学第十九届青年教师教学基本功比赛  最佳教学演示奖

北京大学第十九届青年教师教学基本功比赛  最受学生欢迎奖

北京大学2019-2020年优秀班主任

北京高校第十二届青年教师教学基本功比赛 理科类A组 最受学生欢迎奖

北京高校第十二届青年教师教学基本功比赛 理科类A组 最佳教学反思奖

北京高校第十二届青年教师教学基本功比赛 理科类A组 三等奖

2019年度北京大学优秀工会积极分子